


Form-Oriented Analysis



Dirk Draheim · Gerald Weber

123

Form-Oriented
Analysis

With 83 Figures

A New Methodology to Model
Form-Based Applications



http://www.formcharts.org/

Library of Congress Control Number: 2004112522

ACM Computing Classification (1998): D.2.1, D.2.2

ISBN 3-540-20593-4 Springer Berlin Heidelberg New York

Dirk Draheim
Institute of Computer Science
Freie Universität Berlin
Takustr. 9
14195 Berlin, Germany
draheim@acm.org

Gerald Weber
Department of Computer Science
The University of Auckland
Private Bag 92019
Auckland 1020, New Zealand
g.weber@cs.auckland.ac.nz

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in
data banks. Duplication of this publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9, 1965, in its current version, and
permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: KünkelLopka, Heidelberg
Production:  LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig
Typesetting: by the Authors
Printed on acid-free paper   45/3142/YL - 5 4 3 2 1 0



Preface

This book presents a special purpose modeling technique for the analysis and
design of an important system class, namely form-based enterprise systems.
Recent discussions on modeling languages emphasize that there is a strong
demand for such domain-specific modeling languages. The class of form-based
enterprise systems includes, for example, web shops as well as ERP and B2B
solutions and can be said to be paradigmatic for enterprise computing. This
book was motivated by the widespread interest in this type of business ap-
plication from professionals as well as from scientists. The book adapts well-
established basic modeling techniques in a novel way in order to achieve a
modeling framework optimized for the indicated application domain.

Besides its practical parts the book details theoretical achievements, which
lead to real improvements in the application domain of the book. It explains
how to model a form-based enterprise system during the analysis and spec-
ification phase, and how these models translate into good design. Typical
form-based applications have common properties that can be molded into
specialized diagram types for such applications. Such a diagram type is the
formchart, the central artifact that is described in the book. The formchart is
a good example of customized diagrams according to the most recent proposed
profiling techniques.

If form-based enterprise systems are modeled with typical general purpose
modeling approaches without such customizations, there are a number of ob-
stacles the modeler will face. For example, if one employs use case modeling
together with interaction diagrams, the analyst will be confronted with three
problems. First of all, the method has to be adapted to the form-based appli-
cation, since no specific guidance for this special application type is part of the
general method. Secondly, the model will become complex for even small-sized
problems, since every diagram has to repeat common properties of this very
specific application class. Hence the model tends to become highly redundant,
and the important distinguishing information is diluted. Furthermore, a third
problematic aspect is that current analysis methods are traditionally rather
oriented towards event-driven and complex GUI-based applications but not



VI Preface

towards form-based applications. Hence the customization demand for form-
based applications is particularly high.

Conversely, there are certain benefits the reader of the book can reap by
employing the new customized artifacts presented in this book. The reader
can obtain faster results and more significant models, because the common
properties of enterprise systems are already incorporated in the semantics
of the modeling method. The new artifact types presented in this book in-
corporate the results of studying form-based systems in general, knowledge
that a software engineer can hardly obtain in the limited setting of a running
project. Our method provides a separation of concerns by splitting the general
semantic structure of such applications from the specific information about
business logic in the concrete single project. The foundation of the new tech-
niques is fully elaborated in the book for the working developer confronted
with everyday problems in professional IT projects. In the same way, the sci-
entist interested in performing novel research on enterprise systems can use
this formal reference.

The book is divided into four parts. The first part is a detailed discussion
of the new modeling method for form-based systems from a practitioner’s
viewpoint and explains how the proposed techniques can actually be employed
in a project. The second part is about tool support and exemplifies how the
concepts introduced in the first part can be exploited by several different
implementing technologies. The third part provides the semantic foundation
of the different kinds of diagrams and tools introduced in the first and second
parts. The fourth part serves as a summary and provides a discussion of related
work.

After the introduction the book starts with an in-depth motivation for the
new techniques. It is shown that the considered system class encompasses a
wide range of important enterprise systems from mainframe/terminal systems
through ubiquitous COTS software to modern web applications. The explana-
tions in the book are deliberately based on a realistic running example in order
to make a difference. Throughout the book the concepts are exemplified with
an online bookshop. This example is not an arbitrary choice of the authors
– the important TPC-W benchmark, for example, also uses a standardized
online bookshop as a representative example of typical business functionality.
The form-oriented information system model is introduced. Different kinds
of diagrams for these models, i.e., screen diagrams, page diagrams, form sto-
ryboards, and formcharts are introduced for the user interface state part of
these models. All of these, and the further model components, i.e., dialogue
constraints and the layered data models, are introduced immediately with un-
ambiguous semantics and are used in modeling the running example. Then,
techniques for decomposition and refinement are discussed. A parsimonious
data modeling language is elaborated. A message approach to the modeling
of data interchange is outlined. The book is not primarily about software en-
gineering processes; however, it provides a discussion on how the proposed
artifacts can be exploited in an entire software engineering life cycle. The



Preface VII

interplay of some proposed best practices that are centered around descrip-
tiveness, artifact orientation, feature orientation, and reuse are discussed. For
each concept we show how it can be used to add sustainable value to the
respective software engineering activities.

The second part discusses issues of architecture, design, and implementing
technology. From this discussion concepts and concrete prototypical technolo-
gies for forward engineering, reverse engineering, and the implementation of
web presentation layers are derived.

The third part of the book presents the semantic foundation of form-
oriented analysis. First, several alternatives for tool support are discussed
and given a conceptual basis using an integrated source code model. Then,
precise semantics for the form-oriented diagram types are given. For this pur-
pose, a new, lightweight, semantics framework approach is introduced as an
alternative to current multi-level metamodeling techniques. Along the lines of
the framework approach precise semantics of formcharts, layered data mod-
eling, and the dialogue constraint language are given. This is followed by a
discussion of the semantic of the proposed parsimonious data modeling ap-
proach. A formal type system for the interplay of server actions and pages of
submit/response style systems is provided.

The fourth part provides a focused description of the widely accepted
modeling approaches in use. The discussion shows the differences between
these approaches and the new method, but it also shows how our method is
integrated with standard modeling techniques. For each related method we
discuss how it could be applied to enterprise systems and how form-oriented
analysis provides a more convenient solution. Therefore this chapter provides
a different view on the benefits of form-oriented analysis to the reader. Finally,
a summary of the main contributions is provided.

The reader should have some experience with object-oriented program-
ming languages. First-hand experience with visual modeling languages and
the graphical tools for them is helpful. Basic knowledge of SQL is also desired
for some advanced excursions, but this can be postponed until needed. Re-
lated approaches are comprehensively introduced, so that even a reader who
is new to these other approaches can follow the arguments.

The book targets professionals, i.e., working software engineers and deci-
sion makers, researchers in computer science, and upper-level graduate stu-
dents who are interested in enterprise systems. Care must be taken, because
professionals, researchers, and students typically have different objectives, dif-
ferent dispositions, and different opinions with respect to software engineering
topics. This is due to the fact that goals and driving forces are different in
industry and academia. Consequently, readers may have different attitudes
towards the several parts of the book; see the figure below for a guess. In the
figure, supposed main interests are shaded gray, whereas minor interests are
left blank.

Professionals actually working on enterprise software will gain a deepened
understanding of form-based systems from the abstract system viewpoint pro-



VIII Preface

Professional

Part I
Modeling Form-Based Systems

Part II
Tool Support

Part IV
Conclusion

Part III
Semantics

Presentation of 
Form-Oriented Analysis

Precise
Reference Manual

Entry Point for
Further Investigations

Preliminary
Semantics

Practical
Justification

Learning
Aid

Scientist

Student

Discussion of
Related Work

Summary

Summary

Presentation of 
Form-Oriented Analysis

Presentation of 
Form-Oriented Analysis

vided by form-oriented analysis. Many developers already use ad hoc tech-
niques tailored to form-based systems like naive page diagrams or click dum-
mies. These ad hoc techniques arise naturally when developing form-based
systems but lack an elaborated conceptual basis. The book allows these de-
velopers to strengthen these techniques in practice. Readers can employ the
approach directly in projects, because every concept introduced comes with
precise semantics and the mutual dependencies between the concepts are elab-
orated, too. The prototypical forward and reverse engineering tools are suit-
able for convincing the professional about the potential practical impact of
the form-oriented approach. The third part of the book is less important for
the professional. If a semantical clarification is needed, this part can serve
as a precise reference manual. The professional can use the fourth part as a
detailed summary.

Researchers might be especially interested in the third part of the book
as an entry point for further investigations. Upper-level graduate students
will benefit from the presentation of state-of-the-art knowledge about the
development, architecture, and design of enterprise systems in the organizing
framework of form-oriented analysis. The second part of the book will help
students to grasp more easily the concepts of form-oriented analysis.

Since enterprise applications are a particularly important class of software,
almost every IT professional, computer scientist, or computer science student
may have some interest in gaining at least an overview of the fundamentals of
enterprise computing. The book is written with the different objectives of pro-
fessionals, researchers, and students in mind. In industry productivity eventu-
ally targets return on investment. Product quality and product quantity are
limited by productivity. Productivity is limited by the availability of resources.
Knowledge acquisition is needed to improve productivity. Academic activity
spans two areas that have to be integrated: research and education. While aca-
demic research has a subtle target, i.e., the construction of knowledge, higher



Preface IX

education has the tangible responsibility to produce well-prepared profession-
als. Academic research is driven by the pressure to get contributions published
in the scientific peer community. Higher education is driven by the demands
of the yet uneducated. Altogether these differences result in the following: one
and the same concept can be perceived totally differently by individuals in
industry and in academia. We encourage all who try to keep an open mind
and hope that this book provides valuable information or inspiration.

We are indebted to Martin Große-Rhode for his encouragement and advice.
We want to thank our editor Ralf Gerstner for his support and guidance. We
would also like to thank the reviewers who made many helpful comments.

Berlin, August 2004 Dirk Draheim
Auckland, August 2004 Gerald Weber



Contents

Part I Modeling Form-Based Systems

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Enterprise Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Modeling Enterprise Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 High-Level Transactional Programming . . . . . . . . . . . . . . . . . . . . 6
1.4 A Parsimonious Relational Notation . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 A Descriptive Approach to the Software Development Process . 7

2 The Form-Based System Paradigm . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 The Submit/Response Style Interface . . . . . . . . . . . . . . . . . . . . . . 10
2.2 A Message-Based Model of Data Interchange . . . . . . . . . . . . . . . . 20

3 Exploring the Online Bookshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 The Dialogue Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The Persistent Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 An Exemplary Submit/Response Style System . . . . . . . . . . . . . . 32

4 Form Storyboarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1 Page Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Form Storyboards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Formcharts and Dialogue Specification . . . . . . . . . . . . . . . . . . . . . 49
5.1 Form-Oriented Information System Models . . . . . . . . . . . . . . . . . 49
5.2 The Dialogue Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 The Layered Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Dialogue Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5 The Bookstore Formchart and Data Model . . . . . . . . . . . . . . . . . 74



XII Contents

6 Model Decomposition and Refinement . . . . . . . . . . . . . . . . . . . . . 97
6.1 Model Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Formchart Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Formchart Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 A Feature-Driven Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5 State Sets and State Specialization . . . . . . . . . . . . . . . . . . . . . . . . 104
6.6 Decomposition of Page Diagrams and Form Storyboards . . . . . . 107
6.7 Model Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.1 The Parsimonious Data Modeling Language . . . . . . . . . . . . . . . . 111
7.2 The Data Access Language DAL . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3 The Transaction Data Access Language TDAL . . . . . . . . . . . . . . 121
7.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.5 Style Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Message-Based Modeling of Data Interchange . . . . . . . . . . . . . 147
8.1 Connectivity of Enterprise Systems . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 The Message-Based System Viewpoint . . . . . . . . . . . . . . . . . . . . . 150
8.3 Data Interchange Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.4 Data Interchange Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.5 The Relation to Data Flow Diagrams . . . . . . . . . . . . . . . . . . . . . . 160
8.6 The Interplay of Formcharts and Data Interchange Diagrams . 162
8.7 Topic Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9 A Descriptive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.1 Descriptiveness, Prescriptiveness, and the Software Process . . . 168
9.2 Metaphor A Posteriori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.3 On Desktop Metaphors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
9.4 On Real-World Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.5 Visual Modeling De-emphasized . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.6 Artifact Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.7 The High-Level Programming Viewpoint . . . . . . . . . . . . . . . . . . . 177
9.8 Advanced Systems Modeling Approaches . . . . . . . . . . . . . . . . . . . 180

Part II Tool Support

10 Forward Engineering and Reverse Engineering . . . . . . . . . . . . . 187
10.1 Forward Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.2 Reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.3 Source-Code-Opaque Reverse Engineering . . . . . . . . . . . . . . . . . . 196



Contents XIII

11 Typed Server Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.1 Type-Safe Interplay of Forms and Scripts . . . . . . . . . . . . . . . . . . . 200
11.2 Functional Decomposition of Server Pages . . . . . . . . . . . . . . . . . . 214
11.3 Higher-Order Server Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
11.4 A Comparison of Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . 224

Part III Semantics

12 The Integrated Source Code Paradigm . . . . . . . . . . . . . . . . . . . . 229
12.1 Towards Structured Collaborative Work . . . . . . . . . . . . . . . . . . . . 229
12.2 Structured Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
12.3 The Syntax Model Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
12.4 A Closer Look at Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
12.5 The Integrated Source Code Paradigm . . . . . . . . . . . . . . . . . . . . . 237
12.6 A Flexible Generic Textual Format for Data . . . . . . . . . . . . . . . . 241
12.7 Generative Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

13 State History Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.1 State History Diagrams and Class Diagrams . . . . . . . . . . . . . . . . 249
13.2 Discussion of Formchart Semantics . . . . . . . . . . . . . . . . . . . . . . . . 258
13.3 Semantics of Dialogue Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 260
13.4 Path Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

14 Semantics of the Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
14.1 Semantics of the Temporal Model . . . . . . . . . . . . . . . . . . . . . . . . . 271
14.2 Alternative Fundamental Models . . . . . . . . . . . . . . . . . . . . . . . . . . 274
14.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

15 Semantics of Web Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
15.1 Formal Semantics of Web Signature Recovery . . . . . . . . . . . . . . . 283
15.2 Coding Guidelines for Typed Server Pages . . . . . . . . . . . . . . . . . . 287
15.3 Formal Definition of the NSP Type System . . . . . . . . . . . . . . . . . 299

Part IV Conclusion

16 A Comparison of Modeling Methods . . . . . . . . . . . . . . . . . . . . . . . 325
16.1 User Interface Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
16.2 Web Site Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
16.3 Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
16.4 Model-Oriented Specification Languages . . . . . . . . . . . . . . . . . . . . 329
16.5 Structured Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
16.6 Object-Oriented Analysis and Design . . . . . . . . . . . . . . . . . . . . . . 335
16.7 Model-Driven Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338



XIV Contents

17 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
17.1 Contributions to Modeling Form-Based Systems . . . . . . . . . . . . . 343
17.2 Contributions to Modeling in General . . . . . . . . . . . . . . . . . . . . . . 347

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367



List of Figures

2.1 Example pages of the online bookshop . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Ultra-thin client based submit/response style systems . . . . . . . . . 12
2.3 SAP R/3 system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Example formchart for a system login capability . . . . . . . . . . . . . . 17

3.1 Welcome screen of the online bookshop . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Login screen of the online bookshop . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Registration screen of the online bookshop . . . . . . . . . . . . . . . . . . . 26
3.4 Category screen of the online bookshop . . . . . . . . . . . . . . . . . . . . . 27
3.5 Book page of the online bookshop . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Shopping cart of the online bookshop . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Order information page of the online bookshop . . . . . . . . . . . . . . . 30
3.8 Search result page of the online bookshop . . . . . . . . . . . . . . . . . . . 31
3.9 Data model of the online bookshop . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Page diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Screen diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 List of options for a single conceptual option . . . . . . . . . . . . . . . . . 40
4.4 Form storyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Page images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Form storyboard annotated with interaction information . . . . . . 45
4.7 Message storyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 The information system model of form-oriented analysis . . . . . . . 50
5.2 A first formchart example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Two alternative formcharts for the same model . . . . . . . . . . . . . . . 57
5.4 Formchart naming conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Opaque references in the information model . . . . . . . . . . . . . . . . . 61
5.6 Formchart notational elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.7 Three-valued logic in OCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.8 Meaning of path expressions in the formchart . . . . . . . . . . . . . . . . 72



XVI List of Figures

5.9 Complete formchart for the bookstore example . . . . . . . . . . . . . . . 75
5.10 Login, registration and logout feature of the online bookshop . . 76
5.11 Conditional server/page transitions . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.12 Refinement of a server input constraint . . . . . . . . . . . . . . . . . . . . . . 80
5.13 Browsing feature of the online bookshop . . . . . . . . . . . . . . . . . . . . . 85
5.14 Shopping cart feature of the online bookshop . . . . . . . . . . . . . . . . 88
5.15 Buying feature of the online bookshop . . . . . . . . . . . . . . . . . . . . . . 90
5.16 Reuse of the login and registration subdialogues . . . . . . . . . . . . . . 91
5.17 Managing user data in the online bookshop . . . . . . . . . . . . . . . . . . 92
5.18 Search feature of the online bookshop . . . . . . . . . . . . . . . . . . . . . . . 93
5.19 Graphical representation of a client output constraint . . . . . . . . . 96

6.1 Named partitioning of a formchart . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Hierarchical formchart decomposition . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 Structured analysis: leveled data flow diagram . . . . . . . . . . . . . . . 101
6.4 A flat formchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5 Additional features of the bookstore . . . . . . . . . . . . . . . . . . . . . . . . 103
6.6 Modeling with state set notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.7 Using state set notation for the bookstore features . . . . . . . . . . . . 105
6.8 Modeling enabling conditions based on state specialization . . . . . 106

7.1 The PD model of the bookshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2 A submodel of the bookshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.3 A relation of arity 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4 A partial order in the data model . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.5 A composition constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.1 Example datatype interchange diagram . . . . . . . . . . . . . . . . . . . . . 153
8.2 Model subsystem in a DTIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.3 Edges between actions within the same model . . . . . . . . . . . . . . . . 155
8.4 Example DTIMs of the login dialogue . . . . . . . . . . . . . . . . . . . . . . . 160
8.5 A DTIM and an equivalent DFD . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

10.1 The Angie language related tool suite . . . . . . . . . . . . . . . . . . . . . . . 187
10.2 Grammar of the language Angie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
10.3 Bookstore login capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
10.4 Revangie: example screen classifications . . . . . . . . . . . . . . . . . . . . . 198

11.1 CPDS and CPTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
11.2 Model 2 architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
11.3 Model 2 architecture versus NSP functional decomposition . . . . 218
11.4 Example interaction diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
11.5 Higher-order server pages design example . . . . . . . . . . . . . . . . . . . . 224

12.1 PD core syntax model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
12.2 Multiplicity syntax model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234



List of Figures XVII

12.3 A cutout message storyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

13.1 Frameworks for state history diagrams and formcharts . . . . . . . . 252
13.2 A formchart is derived from the semantic framework . . . . . . . . . . 255
13.3 The object net over a formchart is a path . . . . . . . . . . . . . . . . . . . 256
13.4 A login subdialogue as UML state machine . . . . . . . . . . . . . . . . . . 259
13.5 Semantics of path expressions in DCL . . . . . . . . . . . . . . . . . . . . . . . 266
13.6 Example of path expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
13.7 UML tree definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

15.1 Example form message type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
15.2 Example cyclic form message type . . . . . . . . . . . . . . . . . . . . . . . . . . 296
15.3 Example complex form message type. . . . . . . . . . . . . . . . . . . . . . . . 297
15.4 List definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

16.1 The Seeheim model of user interfaces . . . . . . . . . . . . . . . . . . . . . . . 326
16.2 Data flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
16.3 Use case diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337



Part I

Modeling Form-Based Systems



1

Introduction

What is the business logic of an enterprise system? How do I specify it in such
a way that I know how to transform it into a running system, by skill and by
automated tool support? This book gives a self-contained introduction to the
modeling and development of business logic for enterprise systems.

Enterprise systems are a distinct and highly complex class of systems. They
are characterized by their importance for enterprises themselves, making them
mission critical, by their extreme multi-user capability, by their tolerance of
heavy loads, and by their tight integration with the business processes, which
makes every enterprise system installation unique. In short, they are one of
the most fascinating yet most demanding disciplines in software engineering.
This book is in the first instance intended to be a conceptual introduction to
and comprehensive overview of enterprise systems modeling.

Enterprise applications can be singled out within the domain of database
applications in general through a number of typical characteristics, which are
usually not discriminating if seen in isolation, but which together characterize
enterprise applications. An example of a database application very different
from enterprise applications is a typical genome database. Enterprise applica-
tions store amongst other things data describing events in time. The enterprise
system is critical for ensuring data consistency and allowing action consistent
with those data in particular. An enterprise system installation controls a cer-
tain defined part of an organization. Installing and using the system a second
time in parallel for the same business processes leads to serious problems. The
correct assignment of the installation to a part of an organization is itself a
basic element of this consistency effort, otherwise outdated data is used. This
does not mean that multiple installations with correct information about their
domain cannot cooperate. It just means that enterprise system installations
are in a certain sense territorial. This can be pinned down to the data they
manage.

This book explains enterprise systems in the novel form-oriented frame-
work, which is easy to learn and practically applicable yet theoretically power-
ful. It introduces the form-based system specification as the key notion for the



4 1 Introduction

conceptual definition of business logic. It explains state-of-the-art modeling
languages and their usage for specifying business logic and for the subsequent
building of enterprise systems. The techniques presented here are applicable
to enterprise systems of all sizes.

1.1 Enterprise Systems

Enterprise systems are a type of system where so-called business rules are
automated. The term business rule refers to a high-level data manipulation
rule, which is executable manually or mechanically. But business rules can
contain straightforward computations, which we expect today to be executed
by a system, or which we even require to be done, not only for convenience,
but also for security and data integrity, like the tax on a purchase computed
by a cash desk.

There is an intricate relationship between business rules and enterprise
systems. Enterprise systems have a distinctive look and feel, because they are
mainly systems for managing business rules. On the other hand, if you have
a business rule, it is at least conceivable that it will be executed or supported
by an enterprise system. Take as an example your mortgage. If you ask your
banker about it, the banker should and probably will draw up a financing
plan in which you can see what you have to pay each month and what you
still owe afterwards. The banker will get this perhaps from the intranet web
portal of the bank created by a part of the bank’s enterprise application.

In this book we will encounter a uniform viewpoint on business rules, the
form-based metaphor. We will learn a general method for describing business
rules as functionalities, or features of a form-based system. The motivation
is not in any way the assumption that business rules must be executed with
form-based systems. It is rather the goal to have a common notation, which
allows comparisons of different business rules in a common language. If we
therefore model a business rule like the mortgage computer above as a part
of a form-based system, it is based solely on the assumption that it is possible
to model the system in such a way, but not on the belief that it is necessary
to do so.

One interesting advantage of this uniform modeling approach for form-
based systems is, indeed, that by subsuming business applications under this
model we single out a well-defined category of system properties in the follow-
ing, slightly tricky sense. By viewing every business rule as performed with
a form-based application, we abstract from the properties of the application,
which make no difference in this type of interface. For example, whether a
system is used from a touch screen on dedicated terminals, or as a web ap-
plication over the Internet, might not make a difference with respect to the
description of the form-based interface. These differences nevertheless can and
should be recognized, but they somehow belong to a different kind of property.
The key advantage is to gain a useful classification of different types of system



1.2 Modeling Enterprise Systems 5

requirements. We therefore introduce the term business logic requirement in
order to refer to such requirements, which we can express as requirements of
the system within our form-based metaphor. In other words, the subsump-
tion of applications under the form-based metaphor is our operative method
to separate the business logic requirements from the whole requirement mix.
Business logic requirements form the part of an organization’s business rules
that are to be mechanically executed by the enterprise system.

A full requirements description of a system will consist of the business logic
requirements gained in this way as well as all more general requirements.
In this book we focus solely on the domain of business logic requirements.
This does not reduce the importance of the other requirements in any way.
Making the modeling and implementation of business logic requirements more
efficient is an encouragement that more care should be taken for these other
requirements as well.

1.2 Modeling Enterprise Systems

In this book a semantically precise notion of form-based systems is explained,
and called the notion of submit/response style applications. This gives us an
exactly defined concept of form-based systems.

This notion of submit/response style systems is therefore the framework
in which we can model business rules, and it can be seen as a novel concept of
a virtual business machine, i.e., a machine, which is directly able to execute
business logic, regardless of whether it includes human interaction or not. We
can now forge the important notion with which we want to refer to business
logic requirements in their form as executable programs of this virtual ma-
chine. We call the program of this virtual machine the business logic of the
application.

These considerations lead to another key concept in our considerations,
namely executable specification. If our business logic can be conceived as the
program of a virtual business machine, then our specification method is noth-
ing less than a high-level programming language. In fact, some decades ago,
the concept of such languages for data-centric applications appeared so nat-
ural that the terminology “fourth generation languages” was coined for these
types of languages. This term “fourth generation language” can now be said
to be tied to the even more specialized look and feel of such a language, like
ABAP-4 in the SAP system. Like this example, fourth generation languages
are typically tightly integrated into single-vendor platforms. The modeling
method presented here can nevertheless be seen as an integration of practical
experiences from fourth generation languages into a state-of-the-art modeling
style. In principle it is therefore conceivable that a future business platform
running as a virtual machine on common platforms can interpret business
logic directly.



6 1 Introduction

1.3 High-Level Transactional Programming

A central topic in this book is the distinction between high-level program-
ming and specification. High-level programming is a programming paradigm,
which is on the abstraction level of specifications. Yet a high-level program-
ming paradigm must be effectively translatable in efficient code on standard
platforms.

The vision of high-level programming is certainly not restricted to the idea
of a fully automated translation. This idealized concept of the translation of
the functional specification into a running system on a current platform is
neither state-of-the art, nor the most desirable concept. The high-level pro-
gramming vision rather exploits the broad range of programming notions.
Consider higher programming languages, which indeed started as a kind of
abstract notation, but which were often not translated automatically, but
manually. The task of the programming language was to encode knowledge
about good program design.

The most intuitive use of a high-level program is perhaps as an input for a
generator. The generator translates the system description into a target code,
i.e., it can be compared to a compiler approach. However, the translation
process is more transparent, in that the target code can be customized. The
difference between a high-level programming paradigm and a general specifi-
cation paradigm is that the former allows only those specifications that are
known to be translatable into code. This is not a contradiction of the previous
statement that the translation can also be transformed manually. However,
one must be aware of that the code generated from the high-level program may
not be a complete implementation: it may well be that there are still system
parts that have to be developed manually on the target platform. One could
also say that there are also tasks of tuning, which have to be done manually,
since the problem is not to generate some code that fulfills the specification
and is executable, but to generate efficient code.

1.4 A Parsimonious Relational Notation

Throughout the book we use class diagrams for data modeling. We start our
examples with some currently discussed modeling approaches, e.g., UML and
OCL. From the problems encountered there we will advance to a new, simple
data modeling notion, the PD models. It has not just a simple format, but
also a precisely defined meaning, its semantics. This notation is especially
good for training and educational purposes, being an excellent primer for the
sometimes more abstruse and feature-laden notations used in industry. It is
particularly designed as a preparation of the diverse modeling landscape in
industry and research. In industry projects as well as in scholarly discussions
one might encounter a whole range of different data modeling notations, like
ER diagrams and UML diagrams, but also database schemes, which all turn



1.5 A Descriptive Approach to the Software Development Process 7

out to be related approaches to data modeling. The PD model notation in this
book is an introduction to the commonalities of all these notations. The PD
notation provides a good preparation for the very important skill nowadays
to be able to quickly grasp new notations.

You will be well prepared if you keep your mind open, and if you are
trained to identify the common concept behind these notations.

Industry notations, like UML, have the property that they must possess
deliberately ambiguous semantics, in order to capture a number of differing
notions under the umbrella of a unified notation – hence the name. In contrast,
the notion used in this book has a fixed format as well as semantics. Of course
you are encouraged to use the PD modeling notation presented here in your
projects. Hopefully you will experience the advantages of a lightweight yet
feature-rich approach that is tailored for today’s enterprise applications.

1.5 A Descriptive Approach to the Software
Development Process

Form-oriented analysis proposes artifacts for modeling. These artifacts are ac-
companied by recommendations on when and how to produce these artifacts.
However, these recommendations must not be misunderstood as prescriptions
– form-oriented analysis is a descriptive approach to software development.
This means, first and foremost, that it should not be used to restrict the
working software developer in any way. For example, we propose a couple of
artifacts for the visualization of our form-oriented information system mod-
els, i.e., screen diagrams, page diagrams, form storyboards, formcharts, which
differ with respect to granularity, comprehensibility, and preciseness.

Coarse grain modeling is motivated by certain demands of the require-
ments elicitation process, e.g., the need for lightweight communication with
the domain expert, or a desired jump start to modeling. Then, for the sake of
a convenient presentation the different kinds of artifacts are presented in this
book in the manner of a strict stage-wise process, as if we were proceeding
in a project from informal to more and more formal documents. However,
this should not convey the impression that the proposed artifacts can only be
exploited in a defined proceedings.

The arguments of form-oriented analysis aim at empowering the developer,
they aim at improving the modeling of enterprise systems under the overall
umbrella of artifact orientation. Ideally, form-oriented analysis provides the
conceptual underpinning for some personal best working practices that the
developer has already discovered by him- or herself, though in an ad hoc
manner, or that he or she has learned from a colleague – typically from a
senior developer.

In a wider sense, the descriptive approach has several properties, which
are not mutually exclusive:



8 1 Introduction

• Orthogonality with respect to process models.
• Focus on conceptual insight.
• Free approach.
• Holistic approach.

Software development methods can have a product model aspect and a pro-
cess model aspect. Different software development methods can put different
foci on these aspects. Actually, we argue that a concrete software development
method can be advantageous with respect to product modeling even without
reference to any process model. As we have already mentioned, form-oriented
analysis techniques and tools are orthogonal to process model aspects, too.

Form-oriented analysis focuses on conceptual insight. It tries to foster a
precise understanding of the certain widespread class of enterprise applica-
tions. This does by no means imply that we do not propose concrete formats,
concrete tools, and concrete activities. It just means that concrete formats,
concrete tools, and concrete activities are subject to concrete elaboration and
must not be overemphasized, i.e., they must not be considered more important
than the understanding of the system semantics.

The form-oriented analysis approach does not strictly follow any other
dominating paradigm. This does not mean that it is completely decoupled
from proven techniques and concepts defined so far in the software develop-
ment community. On the contrary, we believe that form-oriented concepts can
be also used in scenarios where other techniques are already successfully es-
tablished. It just means that form-oriented analysis is free from the dictates
of other paradigms and metaphors.

Similarly, form-oriented analysis is not restricted to a certain modeling
level or process stage, say, requirements specification, analysis or design. As
a holistic approach form-oriented analysis is open for equal discussions of
all kinds of problems the working software engineer is faced with. The only
restriction of form-oriented analysis is a self-restriction: it does not aim at
being a general purpose approach, but utilizes assumptions about the systems
that it is designed for.



2

The Form-Based System Paradigm

Enterprise systems encompass online transaction processing systems, enter-
prise resource planning systems, electronic data interchange, and e-commerce.
This means the system class of interest can contain a small web shop as well
as a huge system like the SABRE flight reservation system, which connected
59,000 travel agents in the year 2002 [155].

In this chapter we give an outline of our model for enterprise applications.
An enterprise system can be seen as an installed and running enterprise ap-
plication. The basic type of enterprise system we call a unit system: that is,
a system which we consider as a single unit for our purposes. From the user’s
perspective a unit system is a black box. It is characterized by the interfaces
through which it is accessed. Each unit system is a single unit of abstraction,
it is a single abstract data object. The interface of a unit system which is di-
rectly accessible for us is the human–computer interface for interaction with
the user. A unit system can also have an interface to other unit systems, and
we will call this a service interface . Of the two kinds of interfaces of a unit
system the human–computer interface is the more tangible one, therefore we
begin our outline of the system modeling approach with this type of interface.
In our method, the human–computer interface for communication with one
unit system is session based, and we call it the submit/response style interface.
One can conceive of another kind of interface which is sessionless and resem-
bles a mail client with its mailbox. We will discuss such an interface designed
for communication with multiple unit systems later in the book. But here we
concentrate on the session-based interface type. It captures the key concepts
behind several widespread interface types for enterprise applications, e.g., web
interfaces. In one sentence one can say that the submit/response style inter-
face models the human–computer interaction as an alternating exchange of
messages between the user and the computer. But before we try to understand
submit/response style systems in this way we look at them solely from the
perspective of the user.



10 2 The Form-Based System Paradigm

2.1 The Submit/Response Style Interface

We introduce the class of submit/response style interfaces by using a famil-
iar application as an example, namely an online bookshop as can be found
frequently in a similar form on the Web. Chapter 3 is devoted solely to an
informal description of this example bookstore.

We have designed the following considerations in such a way that the
reader can participate in the development of the ideas about the interface
types. This is intended to be neither a historic line of development nor a
necessary argument; it is just considered to be helpful, instructive, and easy
to follow.

Submit/response style interfaces show at each point in time a page to the
user, the current page. Two such pages, which are taken from our example
bookstore, are shown in Fig. 2.1, i.e., a page showing the contents of the user’s
shopping cart and a page for gathering personal data.

My Shopping Cart

Book Quantity Price

Quine: Word and Object 1 12.46

Wittgenstein: Tractatus 1 23.06

Varela: The Embodied Mind 2 44.68

Adams: Watership Down 7 62.30

Welcome Page
Logout

Search

Search for a book:

Delete

Delete

Delete

Delete

Buy items
in cart

Update

Customer Registration Welcome Page

E-mail Address:

Full Name:

Register

Password:

Repeat Pwd:

WhateverCard

01 2006

Card Type                        Credit Card No.       

Street Address:

City:

State:

ZIP:

Country:

Expiration Date          Cardholder

Fig. 2.1. Example pages of the online bookshop

A submit/response style interface allows the user to perform two kinds of
interactions with the interface: we call them page edits and page change. Page
changes are singular interactions which change the page, i.e., the current page
is replaced by a new page. Page edits are interactions with the current page,
namely the filling out of a form or resetting a form. Forms are the only editable
parts of the page, and are made of input elements. These input elements can
be quite sophisticated by themselves. A very sophisticated form element is a
text field that allows the input of formatted text, as can be found in some
interface technologies.

There is a hierarchy in these two kinds of interaction. Take the search
option as an example. First you enter keywords by page interaction. Then
you press the search button and the system shows the page with the search
results by performing a page change. The page edit is always a preparation for



2.1 The Submit/Response Style Interface 11

the page change in this style. We call this the two-staged interaction paradigm
of submit/response systems.

During the heyday of GUI-based client/server programming such interfaces
were often considered as bare metal legacy technology. The advent of the web
browser as a new thin client has shown many reasons why submit/response
style interfaces are here to stay. On the one hand there are proven system
architectures for submit/response style systems. Classical mainframe archi-
tectures like CICS are still in use and being constantly improved. Some ubiq-
uitous commercial off-the-shelf (COTS) products are successful because they
have a mature system architecture. They provide working solutions for enter-
prise applications, and they take into account the substantial non-functional
requirements of enterprise applications. New vendor-neutral and platform-
independent enterprise computing approaches like J2EE are emerging, tar-
geting the same driving forces such as the classical approaches.

But submit/response style systems do not just have proven software ar-
chitectures. Surprisingly, submit/response style interfaces can have cognitive
advantages, too. This means that submit/response style interaction can foster
usability in many cases, simply because it is often the natural solution with
respect to an automated enterprise functionality.

2.1.1 Proven System Architecture for Submit/Response Style
Systems

Enterprise applications are data-centric and transaction-based. The sub-
mit/response style interface is not tied to any specific technology. On the
contrary, the same characteristics can be found in many technologies, e.g.,
HTML-based clients and mainframe terminals. Even the screens of a GUI-
based COTS system follow the submit/response style interface metaphor.

An important class of systems with submit/response style interfaces are
systems with ultra-thin clients, encompassing terminals and HTML browsers,
see Fig. 2.2. Ultra-thin clients are used for creating an interface tier that does
not contain business logic in itself. Ultra-thin clients cache the user interaction
on one page in the client layer. The page sequence control logic – or workflow
controller – is also not hosted by the client layer but rather by the server
layer. Ultra-thin clients fit neatly into the transactional system architecture,
be it one of the classical proposals [23, 130] or a more recent proposal [181].
Transactional system architectures successfully target many problems: system
load, performance maintainability, scalability, security, and others.

The interaction with a system/response style system is a repeated alter-
nation between data processing and the presentation of a new screen. The
dialogue appears to the user as a sequence of editable screens: the dialogue
steps are screen transactions. The presentation layer of a system is responsible
for a preprocessing of data submitted by the user, the triggering of appropriate
business rules, and the presentation of the correct new screen. Given a multi-
tier system architecture, there is no requirement that this logic be hosted by



12 2 The Form-Based System Paradigm

PC-Memory

Web
Presentation

Layer
CGI

Application Server

Database

GET hypertext/dir/index.html HTTP/1.0

....<head> <title> Dummy </title></head>....

HTTP

PC

Device Buffer

3270 Terminal

Disk Disk

Application Program

TP-Monitor

Mainframe

3270 Data Stream
AID    Cursor Address    Data.....

Command     Cursor Address    Data.....

Browser

Fig. 2.2. Examples of ultra-thin client based submit/response style systems

the application server tier. In the SAP R/3 system [208], see Fig. 2.3, it is
actually hosted by the client tier. The SAP R/3 system architecture is opti-
mized with respect to the notion of commercial off-the-shelf software. In a full
version of the SAP R/3 system the vertical architecture depicted in Fig. 2.3
is completed by a horizontal architecture consisting of a production system, a
consolidation system, and a development system: the necessary customization
of the system is only possible in a defined safe way by deploying new modules
via a special transportation system.

Database

Application Server

ABAP/4 Interpreter

ABAP/4 GUI

TRPC

PBO   input template   PAI

module pool

PBO   input template   PAI

PBO   input template   PAI

process before output

process after input

screen program

transactional remote
procedure call

Fig. 2.3. SAP R/3 architecture – a client/server submit/response style system



2.1 The Submit/Response Style Interface 13

2.1.2 Cognitive Advantages of Submit/Response Style Systems

Form-based interfaces have clear advantages for the self-explanatory character
of a system. The usage of the system is intuitive, since it is guided by a
paper form metaphor. However, the importance of the submission process
is notable; therefore we want to characterize the metaphor as a submission
form metaphor. The difference between temporary input and submission, or
“sending,” is intuitive and fosters the user’s understanding of the system. The
form-based metaphor has a multi-tier structure of its own, without being fixed
to an implementation. The two classes of interactions structure the work of
the user into the work-intensive frequent page interactions and the punctual
and atomic interactions of the “serious” kind, namely the page changes which
also happen to be the conclusion and separation of logically disjoint bunches
of work. The submit/response style character puts the user in command of
the timing of system usage. It protects the user from irritating disruption of
his or her work by incoming information.

In form-based interfaces the submission of a form is an operation that has
exactly the semantics indicated by the metaphor. In computer science terms
we have compared the submission of an actual parameter list with a method
name. The submission form metaphor views interaction with the system as
filling out virtual paper forms and submitting them to a processing instance,
which represents the core system.

The metaphor has the qualified name submission form metaphor, be-
cause other form interface types can be found as well. For example, desktop
databases as found in office suites allow form style interfaces, which possess
page navigation buttons. Input in this form immediately changes the model.
We call such a form style interface a formlike view. Applications using formlike
views are in principle required to have synchronous views of the data: if two
formlike views currently show the same data, and the data are changed in one
formlike view, then the other formlike view has to be immediately updated.
Many implementations, however, have to stick to polling mechanisms, which
leads to latency effects in the update process. Well-known and even worse ex-
amples are file managers, which recognize state changes frequently only after
manual refresh. It is important to recognize that the necessary refresh in this
case is a bad implementation, while the reload mechanism of submit/response
style applications is a logically necessary feature.

In desktop databases the model state is the persistent state. Other appli-
cations with formlike views have non-persistent states, e.g., spreadsheets.

The submission form metaphor has the advantage of possessing a clear
semantics. The two-staged state change due to the two-tiered model is an
integral part of the metaphor. This is quite in contrast to, for example, the
important desktop metaphor. Consider the important drag and drop feature,
which is at the very heart of the desktop metaphor. Drag and drop means
regularly either copy or move, and hence can lead to two different effects.



14 2 The Form-Based System Paradigm

The submission form metaphor is accompanied by the response page prin-
ciple for showing responses of the core system. The submission of a form is a
page change, i.e., the page that hosted the form is hidden and a new page is
shown. This new page is the response from the server. The response page has
three important functions:

• Notifying the user of the immediate status of the submitted form.
• Showing new information to the user.
• Offering new interaction options.

The immediate status of the submitted form is the system’s immediate
response to the form. Depending on the business logic this may or may not
be the completion of the form processing.

• Consider the entry of a new date in a web calendar tool. The response
page is the new calendar view with a short notification message. The form
has been completely processed.

• Consider the submission of an order in an online brokerage system. The
response page is a notification of reception. The execution of the order,
however, takes place asynchronously.

• Consider the submission of an e-mail in a mail account on the Web. The
response page logically is only a notification of some overall validity of
the submitted data, e.g., the recipient’s address contains an at-sign. The
completion of the intended effect, i.e., the delivery of the e-mail, is not
acknowledged at all.

2.1.3 Semantics of Page Change

Each page can contain different forms. A form connects input elements to a
page change option, the submit button. Of course the intuition is that only
the page edit in the form that belongs to a submit button gives the intended
meaning of this command.

This meaning is captured in a message-based model, which we use for the
submit/response system. The user interface is considered as a distinct system,
which we call the conceptual session terminal, or terminal for short. It is very
much an abstraction of today’s web browser used as a client for an enterprise
application. As the name terminal suggests, the terminal is considered to
be connected with the unit system, which means that it can communicate
by messages and only by messages. The conceptual session terminal has a
state, namely the current page shown to the user, optionally including some
invisible information within that page, as well as the page edit the user has
performed so far on this page. The page edit is kept in the terminal until
the user performs a page change, which belongs to a form. Then the contents
of the input elements of this form are transmitted as a data record to the
unit system. The input elements of this form can contain the page edit of
the user, or data which was pre-filled on the page, so-called default data. The



2.1 The Submit/Response Style Interface 15

transmitted data record is tagged with the name of the form, and together this
message is like a remote procedure call. The name of the form is something
like the name of the procedure. It leads to an action on the unit system, and
this action always produces a result, given as a page description. This page
description is a message that is transmitted back to the terminal, and the
described page replaces the current page the user has seen before. This gives
in effect a page change. We call the new current page the response page to
the submission, the received message the response message, and if we do not
want to distinguish it, we call it the response. The page change is therefore
the submission of a parameterized command, and the new page is the result.
The terminal is locked between send and receive. The remote method call is
therefore a synchronous procedure call. This alternation of submissions and
responses has of course given rise to the term submit/response.

The parameter of the submission can of course be empty. There is only one
type of page change. Each page change can, however, transmit data, which
were not rendered on the page.

All page edits that have been performed on input elements which do not
belong to the submitted form are therefore lost; the state of the conceptual
session terminal after a page change is exclusively the response page.

Of course there are many other possible types of interfaces than the sub-
mit/response interface explained so far, e.g., interfaces which support several
pages at once. However, the submit/response style system has its advantages
in that it is quite expressive yet simple and primarily it is very regular. The
strict alternation between the user and system messages yields many advan-
tages for modeling. Therefore it is very suitable for the high abstraction level,
on which we want to focus during analysis. A key concept here, which con-
tributes to the whole method’s characteristics, is the notion that the user can
submit a whole compound data object with each message.

2.1.4 Dialogue Types

We have explained submit/response style interaction as the alternating inter-
change of messages. We now want to introduce static typing to these messages,
and this step alone will lead to a plethora of interesting new properties of our
interfaces.

First we want to introduce static types for the response pages. This means
that only a finite number of page types are allowed for each interface. It allows
us to give a natural yet rigorous meaning to the finite number of pages depicted
in screenshot diagrams (sometimes called non-executable GUI prototypes);
they simply represent the page types. Furthermore it allows us to give precise
semantics to the arrows in these diagrams representing possible page change
in the following way.

The current page has a type from a finite number of page types. We con-
ceive the type of the current page as a finite state aspect of the terminal. (A
finite state aspect is a reduction of the state of a system, which is of interest



16 2 The Form-Based System Paradigm

for the modeler. This is known from finite state modeling in many domains.
Consider the finite states a process can have in an operating system. Of course
each process can in principle have infinite states, but the finite states are the
reduction of interest for the modeler.) The terminal can then be seen as a
finite state machine. The arrows are naturally characterized as transitions.

We now turn to the user messages. They are statically typed as well.
Therefore there can be only a finite number of possible user messages. Each
form on a page must be assigned a single user message type. The page edit
on this form prepares an instance of this type. The page change is then used
for sending this instance as a method parameter. We identify the concept
or the type with the concept of the procedure name. Therefore the type of
the message already determines the processing action of the unit system. We
call this procedure of the unit system the server action. A form on a page is
therefore an editable message instance.

For each page type the number of page changes is constant or bound by
a constant. Consider a catalogue page which contains a list of books. Each
book can be put into the shopping cart with a single click. If we model these
interaction options as separate page changes, then the number of page changes
is not bound by a constant. We therefore conceive all these interaction options
as addressing the same page change, but providing a different parameter every
time. In this way the list of interaction options forms a single conceptual
interaction.

2.1.5 Conditional System Response

If a message is sent to the unit system, the system’s response is conditional,
depending on the message and on the system’s internal state. Of course the
system’s response is conditional with respect to the content of the page, e.g.,
in the case of selecting a book, the shopping cart as the system’s response
depends on the previous cart state as well as on the chosen book. But the
system’s response can be conditional with respect to the page type as well.
Take a system login dialogue as an example. The business logic says that if a
user has never bought anything, then after six months the username will be
deactivated and can be taken by another user. The submission of username
and password can therefore have a number of different effects.

• If the username belongs to a valid account and the password is valid, then
the welcome screen for registered users is shown.

• If the username belongs to a deactivated account and the password is valid,
then the user gets a screen informing him or her that the account has been
reactivated.

• If the username belongs to a valid account which has been taken over by
a user, and the password is the last password of an old user, then the
user gets a notification that his or her account has been collected and
redistributed. A new account is offered to him or her.



2.1 The Submit/Response Style Interface 17

• If the password is invalid, then the user is informed about that, and he or
she is offered assistance for forgotten passwords.

The page type as a state of the finite state machine can therefore end up
in four different pages triggered by the same page change. We want to have
a model that captures both the fact that the user has chosen one single page
change as well as the correct page type of the system’s response. For this
purpose we use a novel bipartite state model. The rationale is that we model
the system’s processing of the request as a separate state. Therefore if the
user triggers a page change, the finite state model of the terminal changes
into a processing state, which we call server action, and depending on the
received response page the state model changes into the respective page type.
The state of the terminal therefore alternates between page types and server
actions. The server actions are left automatically as soon as the unit system’s
response is received. In the same way as we identify the page state with the
type of the displayed message, we now identify the server action with the type
of the message that has been sent from the user to the system and which is
processed during this server action. The resulting bipartite state machine is
painted as a formchart.

Welcome Login

LoginLink

LoginForm

WelcomeLink

Fig. 2.4. Example formchart for a system login capability

Fig. 2.4 shows a first motivating example formchart for a system login
capability. From the system welcome page it is possible to reach a login page
via a link. From there it is possible to abort the login dialogue via a link
back to the welcome page. Of course the login page offers a login form. The
response of the server action representing the login form is conditional: if an
error occurs the dialogue flow is branched back to the login page reporting
an appropriate error message, otherwise it is branched to the welcome page.
The formchart snippet in Fig. 2.4 is taken from the bookstore formchart in
Fig. 5.10.

2.1.6 System Messages as Reports

In our definition of submit/response style systems the elements of human–
computer interaction are messages from the user to the system on the one



18 2 The Form-Based System Paradigm

hand, and messages from the system to the user on the other hand. We now
outline the structure of these messages by giving a first account of a part of
the type system for these messages.

Messages from the system to the user are conceived as reports. A report
is a structured document, i.e., a document with a fixed format. A typical case
would be a simple table: the document can then be seen as a list of data
records, each data record being a row in the table. In the viewpoint we want
to adopt in our considerations, we consider only the true data as the content of
the form. This viewpoint is a little bit tricky, since usually you would require
a report to contain some explanatory data, namely first and foremost the
header of the table containing the column names. But in our considerations
here it is of course desirable to abstract from these requirements in order to
concentrate on the business logic. Now, we give one possible solution, which
we will use in our following considerations. We assume that the conceptual
session terminal has access to the type definitions of our system. This means
that the terminal can access type definitions for rendering. This is exactly
what we assume to happen with the reports the system sends to the user: the
terminal knows the type of the message that is sent. Hence the browser can
retrieve the column names, which are nothing more than the role names in
the record type, from the user’s access to the type system.

We are not interested here in how type information and business data to-
gether are rendered within a single page, as would be necessary in a typical
page description language like HTML. This is not because this is uninterest-
ing or trivial; rather our observation is that the main priority of a business
application is to deliver the information in some readable form – as you may
see in the discussions on classical form-based systems, advanced rendering
topics like fonts etc. are quite neglected by these technologies. The important
idea we have to remember from these considerations is the following: on our
level of abstraction, the task of defining a report consists only in declaring the
information content of the report as a type, and specifying with which data it
should actually be filled. Of course reports can have more complex structure
than the aforementioned tables. Quite common examples are groups of tables
(bestsellers in a category of our bookshop, followed by subcategories), or more
complex data structures within a table cell (a table with a hotel in each row,
and in one column a list of pictograms for the luxury features in this hotel).
In our view we suppose for each report data definition a standard rendering
through the abstract browser.

2.1.7 User Input by Forms

As we have said, we see the user input as a message to the system. In our
model, in close correspondence to what you will find in current platforms, the
user first fills out a form in a local communication with the terminal. The state
of the form in preparation is buffered within the terminal. Only at the time
when the user submits the form is all the data of the form transmitted to the



2.1 The Submit/Response Style Interface 19

system. The very notion of a form is that the data within the form adhere to
a format, i.e., a data type. Hence the most important part of defining a form
is to choose the message data type to which the filled forms will later belong.
In our notion of the terminal this information is, moreover, the only thing this
terminal needs in order to render the form. The terminal therefore basically
uses the type definition itself as a key to the description of a form. Beyond
that there will be a possibility to give further specifications in the single form.
The bottom line is that a form in our system metaphor is a facility with which
the user can construct an instance of a given data type within the terminal,
and then submit it or forget it. It has to be said that such a definition of form
immediately uncovers some shortcomings of many current form description
languages, e.g., HTML again. That is, a straightforward type of form, which
we could well need in certain circumstances, is a form where one can input a
table, such as a list of records. A good example would be a form for an invoice
with many single posts, where each post is mainly described by plain text.
At submission you want to transmit the whole invoice to the system. Such a
list, which should of course grow as you insert new lines, is a straightforward
concept in our view. It is primarily absent in HTML, but it is present in
some-tool based form editors from database vendors.

2.1.8 Interdependence of System Response and User Input

A key concept with regard to form-based systems deals with the way the use
input can be connected with previous system responses. Forms can contain
so-called selection interaction options. The form contains some kind of list,
either a list of products, or a list of options or anything else. The user can
choose from this list only one object – in which case it is called single selection
– or an arbitrary number – in which case it is called multiple selection. The
crucial point is here that the user can only choose what was offered by the
system beforehand. The offer by the system can well have the status of a
report in itself, e.g., in the case of the list of products. Hence the user returns
to the system data which he or she had received with a report beforehand. In
our model we indicate this by the fact that the report of the system contains
not only readable data, but also references to entities in the system. With
the selection interaction option of the form the user chooses between these
references and sends them back to the system. In our notion, incidentally,
this is also the only thing the user can do with these references. They are not
human-readable, they are in that sense not even generally machine-readable.
We will see in a later section on automated systems communications that in
the same way other systems can get such references. They can only use these
references in order to send them back to the system. References therefore
belong to different reference types. A form field for references has such a type,
and only references of this type can be returned in this form field.



20 2 The Form-Based System Paradigm

2.1.9 Forms and the Bipartite Finite State Machine

The bipartite finite state machine specifies for each page type which server ac-
tion types the user can submit in this page type. Therefore the forms available
for the user in each page type are statically fixed. The formchart as a bipartite
state machine gives a model that has an explicit notion of whether the same
business functionality is available from two different page states or not. The
forms on the page, however, may contain different additional specifications,
which may differ from page to page. This will be a topic in the discussion of
dialogue annotation in Sect. 5.4.

The best way to characterize the viewpoint which is taken by the form-
chart with respect to the unit system is the following. The unit system offers
a set of server actions, each of which is available for the user depending on
certain conditions, especially the page state. The formchart has the task of
coordinating the invocation of server actions. It ensures the alternating mes-
sage interchange through its bipartite structure. Furthermore it makes server
actions only available for the user in the way described by the page/server
transitions. In the context of interactions between systems we will discuss
message communication in general.

2.2 A Message-Based Model of Data Interchange

Many enterprise systems communicate by automated interfaces. Such commu-
nication has recently become an area of increased interest in the discussions
about Web services. Though Web services aim at being specifically lightweight
and try to open up new applications for automated communication, the prin-
ciple of automated communication is well established within technologies such
as EDI. Web services are an implementation technique, not a conceptual no-
tion. The keyword business-to-business refers partly to well-established tech-
nology, partly to new initiatives to widen the use of intersystem communica-
tion.

In our method we again want to create a homogeneous abstraction level, on
which only business logic is modeled. Form-oriented analysis is only concerned
with the analysis-level view of such services.

In order to achieve this unit systems can have not only human–computer
interfaces, but interfaces to other unit systems as well, namely the service
interfaces. In this book we will discuss modeling techniques for such service
interfaces, which will have a number of commonalities with the formchart
approach. In our method unit systems communicate first hand with messages.
The unit system model will now especially support a transactional paradigm.
This transactional paradigm offers a convenient approach to model the system
behavior with respect to a message. The system response to a message can
be specified as if the system can afford to process all messages sequentially,
one at a time. In exchange for this it is necessary that the unit system can



2.2 A Message-Based Model of Data Interchange 21

communicate to other unit systems only after processing the message, by
sending new messages.

This can be put into a definition as follows. The transactional unit system
is a computational automaton with a state. The unit system offers a set of
transactions it can perform. Each transaction has an associated message type.
A transaction takes a message and produces a set of new messages.

An untyped view of computational automata is specified by a single state
transition function:

stateTransitionFunction: message × state → state × listof(message)

In the statically typed view the state transition function invokes for each
message type a different transaction, which is the state transition for this
message type. The transition function can provide only a fixed number of
message types:

transactiona: messagea × state → state

× listof(messagea1)

× listof(messagea2)

. . .

× listof(messageana
)

transactionb: messageb × state → state

× listof(messageb1)

× listof(messageb2)

. . .

× listof(messagebnb
)

...

In this model, incoming messages are processed in a strictly sequential man-
ner. It may be noted here that this can be seen as one of the major services
and achievements of transactional technology to provide serial operational se-
mantics for the application programmer, while behind the scenes sophisticated
technology like locking protocols allows for a partially parallel execution. The
main task of transactional infrastructures is therefore to provide simple seman-
tics to the application programmer, which would not be scalable if translated
directly into an implementation.

Messages in our system view must have a sender and a recipient. There is
an inherent network model which takes care of the correct delivery and pro-
vision of correct sender information. The static type system is also involved
here, in that it requires the outgoing messages to be statically tagged with
the correct sender. One of the services which will be provided by the sub-
mit/response style interface view is to deal with the need for the sender and
recipient of messages in the context of a terminal session where both remain



22 2 The Form-Based System Paradigm

the same during the session. For the terminal the need for a recipient is fully
transparent; for the unit system the interesting data are the user ID, not the
terminal.

Today there is considerable effort to specify such inter-system interfaces in
which a complex protocol has to be observed. Traditional analysis techniques
like structured analysis allow for no specification of such complex protocols.
Form-oriented analysis offers more specification options for service interfaces
through the possibility to specify the actions connected with the messages.



3

Exploring the Online Bookshop

We will use as a running example in our considerations an online bookshop.
Such bookshops are familiar from the Web. They show many aspects of general
enterprise applications. Note that the industrial transactional web benchmark
TPC-W [296] uses a bookshop as an example application, too.

In this chapter we set the stage by defining a minimal yet realistic book-
shop. The definition is given by an informal textual description that is ac-
companied by depictions of the possible screens that show up during usage of
the system. Finally a class diagram for the persistent data held by the system
is given. Due to its informality the definition is necessarily ambiguous and
incomplete. The bookshop comprises the following features:

• Browsing categories.
• Simple search facility.
• Shopping cart.
• Buying.
• Registering a new customer.
• Changing customer data.
• Login and logout.

In our online bookshop the user can explore the books on offer by browsing
through a hierarchy of categories as well as searching for particular books by
search criteria. Each book has a book page with the details of the book. The
user can put books into a shopping cart, which the user can view at every point
in time. The user can edit or buy the whole shopping cart. The system allows
for the registration as a new customer and the management of customer data.
Users that are already registered can log in. Further, a professional bookshop
would have additional features like book reviews, wish lists, personalization,
or support for the case of forgotten passwords. The data model supported by
the example bookshop will turn out to be rather terse. However, the example
is already complex enough to encompass the important problems that might
show up in modeling a form-based system and furthermore we hope that the



24 3 Exploring the Online Bookshop

example is voluminous enough to convince the reader in the sequel that form-
oriented practices really work.

3.1 The Dialogue Model

3.1.1 Login, Registration, and Logout

The customer enters the online bookshop via the welcome page. The welcome
page is shown in Fig. 3.1. By choosing links the user can enter the browsing of
the bookstore, view the shopping cart, login or register. Furthermore the user
finds some recommended bestsellers on the welcome page. For every bestseller
the author and the book’s title is displayed. Following an appropriate link the
user can reach the respective book page, where he or she can view details of
the book. Furthermore on the welcome page there is a text field where the
customer can enter search items.

Welcome to Our Online Bookstore !

You can choose:
Browse the bookstore
View Cart
Login
Register as a new customer

Our recommendations:
• Richard Adams. Watership Down. view details
• Niccolo Machiavelli. Discourses. view details
• Willard Quine. Word and Object. view details

Search for a book:

Search

Fig. 3.1. Welcome screen of the online bookshop

If the customer chooses to log in, the login screen (Fig. 3.2) is shown. The
user has to provide his or her e-mail address, which serves as an account iden-
tifier, and a password. If no customer with the entered e-mail address exists
in the system or if the entered password does not match the e-mail address
the system will branch to the login screen again, whereupon an appropriate
error message like the one in Fig. 3.2 is given and the entered password is
redisplayed. There are other possible mistakes the customer can make, which
can be subsumed under the term form field validation. In the case of the lo-
gin screen the user might forget to provide an e-mail address or a password.



3.1 The Dialogue Model 25

Though these errors can be captured by client-side technology, i.e., without
contacting the server, the errors make no difference with respect to a system
description from a user’s viewpoint. Again, the login screen is redisplayed
with an appropriate error message or highlighting the respective formerly
error-prone fields. Especially because the user might be stuck in a loop of
login screens with error messages, the login screen offers a back link to the
system welcome page and a link to the registration page.

Login

Register as a new customer

Your e-mail address:

Your password:
Login

An error occurred. 
The password that you provided did not match your e-mail address. 
Please try to log in again or register as a new customer.

Welcome Page

Fig. 3.2. Login screen of the online bookshop

The system’s registration page is shown in Fig. 3.3. A customer must
fill out a form in order to provide his or her e-mail address, name, address,
and credit card information. The customer must choose a password and has
to type it twice. Again, if the data provided by the user are erroneous, the
page is redisplayed with an appropriate warning. For example, the credit card
number is checked and it is checked whether the password matches the retyped
password. As a side effect of a successful registration, the customer is logged
in.

Consider the welcome page again shown in Fig. 3.1. The figure actually
shows the page’s version of a system usage where the user is not yet logged
in. If the user is logged in, the welcome page might show another headline
displaying the name of the user, but more importantly there will be no more
links that lead to a login page or a registration page. Instead of this these
links will be replaced by a logout button or logout link and a link to a page
where the customer account can be edited.



26 3 Exploring the Online Bookshop

Customer Registration Welcome Page

E-mail Address:

Full Name:

Register

Password:

Repeat Password:

WhateverCard 01 2006
Card Type                        Credit Card No.        Expiration Date          Cardholder

Street Address:

City:

State:

ZIP:

Country:

Fig. 3.3. Registration screen of the online bookshop

3.1.2 Browsing Books

Starting from the welcome page the user can browse a hierarchy of book
categories. He or she can move from the welcome page to the category of all
books, which is shown in Fig. 3.4. As all category pages it shows a list of
links to pages of subcategories. This means the user can descend the tree of
categories until he or she reaches a category with no further subcategories.
Besides the subcategories each category page contains a list of featured books.
This is similar to the welcome page, but this time it is possible not only to
follow links to the respective book pages, but to put a selection of the featured
books directly into the shopping cart by clicking the respective check boxes
and leaving the page by the special submit button that is provided for this
purpose.

From the category page it is again possible to view the cart. Similar to the
welcome page it is possible to the reach the login page and the registration
page if the customer is not logged in, and to log out or to reach the account
editing page otherwise. It is also possible to search for a book. Furthermore
a link to the welcome page is provided. Indeed, a couple of pages of the
system support all or a portion of these options; so do the book page, the
search result page, the shopping cart, the order information page, and the
confirmation page. On these pages the options are always organized in the
same way, i.e., the search option at the bottom of the page, and all other
options at the upper right corner of the page.



3.1 The Dialogue Model 27

Browse subcategories:
• Computer
• Cooking
• Philosophy
• Literature
• Science Fiction
• Sports

Search

Category: All Books

Our recommendations:
• Richard Adams. Watership Down. view details
• Niccolo Machiavelli. Discourses. view details
• Willard Quine. Word and Object. view details

Search for a book:

Welcome Page View Cart
Login Register as a new customer

Add selected items
to cart

Fig. 3.4. Category screen of the online bookshop

Form-Oriented Analysis
Welcome Page View Cart
Login Register as a new customer

Search

Search for a book:

Authors: Dirk Draheim, Gerald Weber

Abstract: What is the business logic of an enterprise system? How do I 
specify it in such a way that I know how to transform it into a running 
system, by skill and by automated tool support? This book gives a self-
contained introduction to the modeling and development of business 
logic for enterprise systems. 

Price: $ 79,95 Add this book
to cart

Fig. 3.5. Book page of the online bookshop



28 3 Exploring the Online Bookshop

At this point it is perhaps worth repeating the motivation for a form-based
method. Though the textual description of the system along the lines of the
different screens of the system dialogue is quite natural, it has started to be-
come clumsy. Some pages have been mentioned in advance in order to explain
some common features but it is beginning to become hard and tedious to
keep track of them. Which pages actually offer which options? What data can
be submitted on which pages? What is the overall navigational structure of
the system? What is the result page of a successful login or registration: is it
always the welcome page or is it the page from where the login or registration
subdialogue was visited, i.e., is it context-dependent? Together with an ap-
propriate decomposition mechanism the page diagram, the form storyboard,
and the formchart are concrete proposed artifacts that aim to answer these
questions. You might want to have a first look at the page diagram in Fig. 4.1
in Chap. 4.

The book page is straightforward. An example book page is shown in
Fig. 3.5. It can be reached from the welcome page and the category pages.
It displays the title of a book, its authors, an abstract, and its price. It is
possible to put the book in the cart.

My Shopping Cart

Book Quantity Price

Quine: Word and Object 1 12.46

Wittgenstein: Tractatus 1 23.06

Varela: The Embodied Mind 2 44.68

Adams: Watership Down 7 62.30

Welcome Page
Logout

Search

Search for a book:

Delete

Delete

Delete

Delete

Buy items
in cart

Update

Fig. 3.6. Shopping cart of the online bookshop



3.1 The Dialogue Model 29

3.1.3 Shopping Cart

The shopping cart is a crucial concept in web shops. As in our bookstore it
usually not only is used to manage the items the customer eventually wants
to buy, but serves as the single entry point to the order subdialogue of the
system. The shopping cart page shows a list of selected items with their desired
quantities and calculated prices, see Fig. 3.6. The quantities can be edited by
the user. Incidentally, as a typical example for the two-staged interaction
style of submit/response style systems, the changes to the quantity fields
only become valid if the user approves them by pressing the update button.
Deleting an item can be done by setting its quantity to zero or using a delete
button, which exists for each item in the shopping cart. On pressing the update
button or one of the delete buttons the new shopping cart is redisplayed.

3.1.4 Buying

If the shopping cart is not empty the cart page contains a special button
for entering the order dialogue. If the user is already logged in, he or she is
directed immediately to the order information page shown in Fig. 3.7. If the
user is not yet logged in, he or she is directed to the login page that is shown
in Fig. 3.2. If the user is new to the bookstore he or she can proceed to the
registration page from there. The login page and the registration page have
been discussed earlier. However, there is an important difference. This time
the user is directed to the order information page instead of to the welcome
page after a successful login or registration.

The order information page depicted in Fig. 3.7 summarizes the shipping
address, the payment method, and the content of the shopping cart. The
user has a last chance to abort the order dialogue. For example, the user
might log out to the welcome page. If the user has discovered an error in
the displayed order information, he or she can proceed to the account editing
page or to the shopping cart page in order to make the necessary corrections.
On the other hand, if the user agrees with the displayed information, he or
she can finally place the order by pressing the respective button. The order
dialogue is completed by a confirmation page that again summarizes the order
information.

3.1.5 Managing User Data

A user can change the data on the account editing page. In our minimal
bookstore the account editing page is nearly identical to the registration page
shown in Fig. 3.3 except for some important differences. Besides a different
headline, the account editing page can only be entered if the user is already
logged in. Then its customer data are displayed as default values in the form
fields of the page. Besides this, the pages behave the same. As in the case of



30 3 Exploring the Online Bookshop

Order Information

Shipping Details Payment Method

John Q. Public WhateverCard, ***- 86745
49 Nowhere Lane Expiration: 01/2008
New Haven, Connecticut 06511, U.S.A.

Book Quantity Price

Quine: Word and Object 1 12.46
Wittgenstein: Tractatus 1 23.06
Varela: The Embodied Mind 2 44.68
Adams: Watership Down 7 62.30
Total 142.50

Place your order

Welcome Page View Cart
Logout Edit Account

Fig. 3.7. Order information page of the online bookshop

the login page and the registration page, the account editing page is context-
sensitive with respect to the targeted page after a successful submission of
data. If the page has been entered from the order information page it will
direct the dialogue flow back to this page and otherwise to the system welcome
page.

3.1.6 Searching for Books

Finally we come to the search feature of the bookstore. This feature is given
by the entirety of search forms that are provided by several different pages
of the system. If the user submits one or more search items with this form
field, the system searches for the most appropriate books. If it finds exactly
one book that matches the query the respective book page is shown to the
user. Otherwise the dialogue branches to a search result page that is shown in
Fig. 3.8. The result screen repeats the search items and presents the book titles
found in the same way the featured books of a category page are presented,
i.e., with options to view details and add the books to the cart.

3.2 The Persistent Data Model

The persistent data model of the bookstore example is given as a class diagram
in Fig. 3.9. The diagram describes the types of master data and transactional
data needed and which are gathered by the described dialogues. The master



3.2 The Persistent Data Model 31

Search Result Welcome Page View Cart
Login Register as a new customer

Search

Search for a book:

Search items: Immanuel Kant

• Immanuel Kant. Critique of Judgement. view details
• Immanuel Kant. Critique of Pure Reason. view details
• Immanuel Kant. Critique of Practical Reason. view details
• Immanuel Kant. Critique of the Power of Judgment. view details
• Immanuel Kant. Groundwork of the Metaphysics of Morals. view details
• Immanuel Kant. Theoretical Philosophy. view details
• Immanuel Kant. Practical Philosophy. view details

Add selected items
to cart

Fig. 3.8. Search result page of the online bookshop

data (which are rather mid-term master data) encompass information about
the books and their categories as well as customer data. The only transactional
data modeled are the orders that are placed by web shop users.

Each category has a name and several subcategories. Thus the categories
form a structure. Each category features a number of books. Typically, one
would like to pose some constraints on this book category structure. For ex-
ample, one would like to demand that the categories form a directed, acyclic
graph, or even a tree – with categories that have no further subcategories as
leaves. Furthermore, one would like to require that the books featured by a
certain category must also belong to at least one of the leaf categories that are
reachable by descending from the considered category. Or, one could require
that a category features all the books that belong to any reachable leaf cate-
gory. It is not necessary to define constraints at this level of detail here. For
this reason, we also do not use advanced notational elements, like aggregation,
composition, or navigation in Fig. 3.9. We even do not specify all multiplicities
in the class diagram.

The data model is pretty terse. It is just comprehensive enough to support
the dialogues described in the previous section. At the same time, it is quite
self-explanatory because it is derived directly from the dialogues. However, it
is necessary to mention the shopping cart. We have omitted it from the data
model for the moment. Later, the shopping cart items will be model as part
of the data model, too.



32 3 Exploring the Online Bookshop

Book    
title:String
abstract:String
price: Amount

Category
name:String

Customer
email:String
fullName:String
password:String

Author    
name:String

Order

authors

1

OrderItem
quantity:Number

1..*

1

0..*

0..*

featuredBooks

1..*

Address
streetAddress:String
city:String
state:String
zip:Number
country:String

CardInformation
cardType:CardType
cardNumber:String
expiration:Date
cardholder:String 

1 1

item

orderItems

buyer

subcategories

cardInformationaddress

Fig. 3.9. Data model of the online bookshop

3.3 An Exemplary Submit/Response Style System

This example system is already suited to explain the main properties of a sub-
mit/response style system and to compare it with other system types. The
first important property of submit/response style systems is that they fol-
low a strict two-staged interaction paradigm. Submit/response style systems
present to the user at each point in time a page which offers two kinds of
interaction options: page interaction and page change. The registration page
for our example offers a back link as well as input fields for text input, and a
submit button. The back link and the submit button on the one hand and the
input fields on the other differ in the effect of input. Input into the input fields
is only preliminary until the submit button is pressed; itself cannot change the
system state permanently. Links and a submit button change the page with
an atomic interaction. They are the only interactions that change the system
state permanently. Hence the difference between both kinds of interaction op-
tions is that page interaction is fine grained, volatile, and reversible, while
page change affects the system state and consists of singular atomic actions.



3.3 An Exemplary Submit/Response Style System 33

Suppose the user has chosen to insert a new address record and has already
filled out all fields of the new record, but has not submitted the new address.
Then in our system there would be no new address record in the non-transient
system state up to this time. Only if the user submits the record to the system
is the new address record entered into the database. But if the user presses
the back button instead, the input is lost.

Page interactions are well understood and can be offered by an application-
independent browser, which is able to interpret a declarative page description
and provide a sufficiently powerful standard page interaction paradigm. This
explains the success story of concrete technologies like the HTML form concept
together with the web browser as a standard ultra-thin client. This two-staged
interaction paradigm is an important difference between a submit/response
style system and other types of systems. Most telling here is a comparison
with a system based on a so-called desktop database. Such tools can be found
in many office suites. They are typically not multi-user systems, therefore
our example is not typical of such an application, but a similar single user
application for desktop databases could use a similar screen layout, e.g., for a
personal address list. However, in such an application a new database record
is created as soon as the user accesses the edit mask. Furthermore, each field
entry is entered immediately into the persistent system state. The interaction
in these systems is hence single staged. Another important difference is the
update policy for pages. In our submit/response style interface, the data shown
to the user are not updated until he or she revisits the page.



4

Form Storyboarding

In this chapter we propose some artifacts that are especially advantageous
with respect to requirements elicitation for submit/response style systems, i.e.,
the page diagram, the screen diagram, the form storyboard, and the message
storyboard. Each of the proposed artifacts features a new notational concept,
which is well motivated. The page diagram is a very lightweight diagram
that visualizes the pages of a system and their interconnections. A screen
diagram is a special kind of page diagram that visualizes example screens. A
form storyboard visualizes both client pages and server actions. Furthermore,
in a form storyboard the input elements of forms are visualized. A message
storyboard is a refined form storyboard, where the data that are presented to
the user are described as well. All the introduced diagrams can be annotated
with informal specifications of the dialogue.

The diagrams in this chapter are intended for communication of the main
conceptual achievements of form-oriented analysis to domain experts. They
are well-suited for requirements elicitation, because they are optimized with
respect to communication of form-oriented user interface models. For the same
reason they are well-suited for user-manuals. However, the modeler is free to
choose when to use the proposed charts, can use different kinds of notations
in parallel, and is actually free to create new kinds of charts tailored to the
special needs of a running task. For example, adding example screens to a
diagram can always be a good idea, i.e., it can be very instructive not only
for page diagrams but also for form storyboards. That means we take the
descriptive approach as explained in Chap. 9: we do not prescribe a process.

This chapter is rather introductory and therefore it is intentionally in-
formal. The proposed diagrams already express the key elements of the sub-
mit/response paradigm. However, questions concerning naming conventions,
rigorous typing and data modeling, formal dialogue specification, and so on
are deferred to Chap. 5. First, two kinds of analysis models will be defined in
Chap. 5, the information system model and the user message system model.
It turns out that the different proposed diagrams are just different views on
such models – different with respect to expressive power and formality. Sec-



36 4 Form Storyboarding

ond, the formchart is introduced, which has the task of making the analysis
models amenable to the writing of formal dialogue specification and coupling
to the data model.

4.1 Page Diagrams

Our page diagram is intended to introduce the modeler to the notion of sub-
mit/response style dialogues in a hands-on fashion. It is especially suited as a
starting point for discussion with the domain expert about the intended task
of the system. Imagine a first meeting in a web application project. One of
the tasks is to define the core requirements of the desired system. How do
you proceed? Perhaps it is a good idea to start by just painting the welcome
page of the system on a blackboard. Then, you could ask: which important
other pages should be reachable from the welcome page? You would paint
arrows between the pages indicating connections. Then you would proceed
recursively. Perhaps it is possible to group the found pages, to combine some
of the found pages, to find new important connections between them. The
result is a naive page diagram, showing pages and connections between them.
No doubt, such diagrams can help elicitating and communicating system fea-
tures. Therefore, such diagrams and related techniques like the click-dummy
can indeed be found frequently in practice, for example in user manuals. No-
tably, the web benchmark TPC-W [296] uses in an ad hoc manner a kind of
diagram that is similar to the one introduced in this section, in order to give
an overview of the system presented there.

4.1.1 Diagrams for Pages and Interaction Options

A page diagram describes a system as a finite set of named pages, each page
offering a finite number of interaction options. Please consider Fig. 4.1; in this
example client pages are depicted by ellipses and interaction options are de-
picted by arrows. The example is a partial description of the web shop that we
have discussed in Sect. 3. Actually, all of the screens that we have discussed
are represented in the figure. It is only a partial description, because it shows
only a subset of the possible interaction options offered on the screens. How-
ever, we have chosen a crucial subdialogue of the complete dialogue. We tried
to select those interaction options that characterize the bookshop example
best and to omit rather common interaction options like, for example, search
forms or links to the welcome page. Because such basic interaction options are
at the same time often quite pervasive, including them into the diagram can
easily clutter the visualization. Consider, for example, the shopping cart client
page in the center of Fig. 4.1 and compare it to Fig. 3.6. We have chosen to
include in the page diagram the item delete option, the items update option,
and the option to buy items. We have chosen not to include the link to the
welcome page, the logout link and the search form.



4.1 Page Diagrams 37

RegistrationLogin Welcome

Category

ShoppingCart

OrderInformation

Confirmation

SearchResult

OrderRegistration

OrderLogin

Book

order items:
this link only exists, if
the cart is not empty 

the login data was erroneous the registration data was erroneous

the login data was erroneous 

the registration data was erroneous 

the user is logged in  

the user is not logged in

select a book out of a list of 
featured books in order to 
view details of the book

browse the books on offer by exploring
more and more subcategories

select books out of a list 
of featured books in order to 
add them to the shopping cart

if the user is not yet a
registered customer, he 
or she might register now

delete a cart item

update cart items

add book to the shopping cart

place an order  

Fig. 4.1. Page diagram



38 4 Form Storyboarding

A complete specification of a system is often a valuable goal, but in many
cases it may not be practically achievable. Our method allows the modeler to
create a complete specification, but of course it is usable for partial specifica-
tion as well and therefore gives the modeler the freedom to choose the degree
of precision which seems appropriate for the project. A complete specification
that is at the same time clearly arranged, i.e., that stays manageable, re-
quires some kind of model decomposition, model abbreviation and refinement
techniques. Such techniques are discussed in Chap. 6.

A crucial observation, which immediately opens the conceptual path to
form storyboards, is that system response may be conditional: a single page
change triggered by the user can result in different response pages, depending
on the system state. For example, if the user chooses to buy the items in the
shopping cart, he or she is directed either to a screen showing order informa-
tion or to the entry page of a login subdialogue, depending on whether he or
she is already logged in. This issue is represented in the page diagram by a
branching edge. The two branches are annotated with appropriate informal
annotations.

The client pages in a page diagram represent sets of possible screens. This
comprehension mechanism is used to abstract from the data displayed on a
certain kind of screen. However, there is no single correct notion of granu-
larity with respect to grouping screens into client pages. Consider the login
client page in Fig. 4.1. If the user provides erroneous login data, he or she is
redirected to the login client page until he or she provides correct data. That
means initial login screens and error login screens are modeled by the same
client page. This works because in the described system the login error screens
are actually identical to the initial login screens except for an appropriate er-
ror message. Nevertheless, the modeler might want to split the login client
page into an initial login client page and an error login client page in order to
foster the understanding of the dialogue. Similarly, we have introduced two
kinds of login client pages, the “mere” login client page and the order login
client page. The screens of both client pages are very similar, but they dif-
fer with respect to a crucial point: if the user has entered the login dialogue
via choosing to buy the items from the shopping cart, he or she is redirected
to an order information screen after login; if the user has entered the login
dialogue from somewhere else, he or she is redirected to the welcome page
after login. This can be easily expressed by distinguishing between two kinds
of login screens in the page diagram. If the screens are mingled into a single
client page, appropriate comments must be added to the resulting diagrams
that may be harder to understand than the chosen modeling alternative.

4.1.2 Screen Diagrams

Page diagrams do not yet support the notion of typed client pages and server
actions. It is the task of the form storyboards and message storyboards in
Sect. 4.2 to offer a defined means of visualizing these types. A more ad hoc



4.1 Page Diagrams 39

My Shopping Cart Welcome Page
Logout

Search

Search for a book:

Delete

Buy items
in cart

Update

Login

Register as new

E-mail:

Password:

login

Welcome Page

Customer Registration
Welcome Page

Street Address:

City:

State:

ZIP:

Country:

Register

WhateverCard

01 2006

Card Type                      Card No. 

Expiration Date         Cardholder

Order Information

Shipping Details Payment Method

John Q. Public Whatever, ***- 86745
49 Nowhere Lane Expiration: 01/2008
New Haven
CT 06511, U.S.A.

Book Quantity  Price

Quine: Word and Object 1       12.46
Wittgenstein: Tractatus 1       23.06
Adams: Dirk Gently 2       24.00
Total 59.52

Place your order

Welcome Page View Cart
Logout Edit Account

Delete

Delete

Book Quantity Price

Quine: Word and Object 1 12.46

Wittgenstein: Tractatus 1 23.06

Adams: Dirk Gently 2 24.00

already logged in

error occurred

error occurred

E-mail:

Full Name:

Password:

Repeat Password:

Fig. 4.2. Screen diagram



40 4 Form Storyboarding

manner to represent the reports and form input capabilities in a form-oriented
chart is offered by the so-called screen diagrams, see Fig. 4.2. A screen diagram
is a page diagram that simply incorporates example screens in its nodes.
Choosing the example screens may require some decisions: should I choose the
initial login screen or the error login screen in order to represent the login client
page? In screen diagrams a node simultaneously shows an example screen and
represents a type of screens employed in the system.

In a screen diagram the source of a page transition can be directly con-
nected to the screen element from which it originates. For example, in Fig. 4.2
the branching edge that is triggered by choosing to buy the shopping cart
items is actually connected to the button “Buy items in cart” on the shop-
ping cart screen. In order to improve the readability of our diagrams, further
notational elements can be invented and further notational conventions can
be fixed. For example, branches of state transitions that represent rather ex-
ceptional cases, typically error cases, are drawn thinner than usual branches.
As another example we introduce the grouping of related interaction options
with a curly bracket, as is shown in Fig. 4.3 for the delete buttons: all the
arrows in Fig. 4.2 starting at delete buttons are grouped. A finite description
of interaction options is the conceptually preferable notion, in contrast to an
unspecified potentially infinite description.

Very importantly, we want to conceive the screen diagram as being a non-
executable system prototype. Note that executable prototypes – sometimes
called click-dummies or mock-ups – are often used in practice.

My Shopping Cart Welcome Page
Logout

Search

Search for a book:

Delete

Buy items
in cart

Update

Delete

Delete

Book Quantity Price

Quine: Word and Object 1 12.46

Wittgenstein: Tractatus 1 23.06

Adams: Dirk Gently 2 24.00
}

Fig. 4.3. List of options for a single conceptual option



4.2 Form Storyboards 41

4.2 Form Storyboards

The form storyboard [90, 95] takes the understanding of submit/response style
applications a step further by introducing into the system model one of the
major conceptual cornerstones of form-oriented analysis: in form storyboards
the system is seen as a bipartite state transition machine. The basic structure
of form storyboards can be seen in Fig. 4.4. Client pages, depicted again by
ellipses, and server actions, depicted by rectangles, are strictly alternating.
There are transitions from client pages to server actions and transitions from
server actions to client pages, both of them depicted by arrows. Unlike a
page diagram, a form storyboard never contains branching edges, because
a conditional system response is represented by several outgoing edges of a
server action. Actually, page diagrams can be seen as the result of shrinking
the server actions of a form storyboard to branching points. The resulting
page diagram now has branching edges; it is more concise, but still remains a
bipartite state transition diagram.

4.2.1 Representing Server Action Signatures

Let us recall the basic viewpoint of form-oriented analysis from Chap. 2.
Submit/response style interaction is two-staged: the interaction is divided into
page interaction, which is temporary and logically local to the client until a
submit is performed, and page change, which is a submit action. Only page
change can affect the system data state. Hence the model is already two-tiered
on an analysis level. The core system state in this view does not include the
client state, which is the conceptual terminal’s state. The advantage of this
software system paradigm is that the client is well understood independent of
the application. Compare this to other types of software systems that may also
use form-like interfaces, but are not submit/response style, for example the
previously mentioned desktop databases as well as spreadsheet applications
found in office suites. These have a single-staged interaction paradigm in which
each change is considered directly as a change of the system data state, at
least in principle. Form-oriented analysis exploits the following observations:

• It is not necessary to model the fine-grained interaction on one page.
• Submitting a form can be considered a method call. Forms and links can

be conceptually unified.
• Messages from the system to the user can be conceived as reports.

Consequently form-oriented analysis maintains strong typing at the system
interface. An example of a detailed type system for the two-tiered presentation
layer of submit/response style systems is formally elaborated in Chap. 15. In
a form storyboard the type of a server action is presented in the server action
node with the following notational elements:



42 4 Form Storyboarding

ShoppingCart

DeleteCartItem
• cartItem

OrderLoginOrder

OrderInformation

OrderLoginForm
• e-mail
• password

PlaceOrder

OrderRegistration

OrderRegistrationForm
• eMail
• fullName
• streetAddress 
• city
• state
• zip
• country
• password
• repeatedPassword 
• cardType
• cardNumber
• expiration
• cardholder

OrderRegistrationLink

WelcomeLinkSearch
• searchItem

WelcomeLink

WelcomeLink

er
ro

r 
oc

cu
rr

ed

er
ro

r 
oc

cu
rr

ed
user

already
logged

in

UpdateCart

• cartItem
• quantity

Fig. 4.4. Form storyboard

• Bullet. The attributes of a server action signature are given by a bullet
list.

• Border. Logically connected attributes can be grouped by bordering.
Groupings can be arbitrarily nested in order to represent treelike struc-
tures.

• Double border. A double bordering hints at a possibly repeated occurrence
of an attribute or several implicitly grouped attributes. Nesting is also
possible.

Consider the server action OrderRegistrationForm in Fig. 4.4. It represents
the form that occurs on the screen for customer registration, see Fig. 3.3. This
form expects several data items, including the e-mail address, the customer



4.2 Form Storyboards 43

name, the street. Each of the expected data items is given a name and is
included into the bullet list of the server action in the form storyboard. We
do not specify the type of the parameters further – we only give names to
the parameters. The signature of the server action UpdateCart is more tricky.
On a shopping cart screen, see Fig. 3.6, a list of cart items is shown. All the
items can be updated simultaneously, because there exists an input field for
a new quantity for each of the cart items. Note that the number of presented
cart items is variable, and that is precisely what is expressed by the double
bordering of the quantity attribute. Furthermore, the quantity attribute is
grouped with an explicit cart item attribute by the double bordering. This
is done in the example in order to model the fact that not only a mere list
of item quantities is submitted by the user: each of the quantities is related
to a certain cart item. Of course, the user does not have to type explicitly
which cart item has to be manipulated – the relationship between quantity
and cart item is specified simply by the layout of the screen: the input field
is next to the cart item it belongs to. To express this in a different way, the
cart item parameter of the update operation is a hidden parameter, which is
implicitly provided by the system dialogue. These considerations lead to the
important concepts of opaque identity and opaque reference facade, which are
elaborated in Sect. 5.3.2.

4.2.2 The IT Expert View and the Domain Expert View

Form storyboards are especially well-suited for communication and joint de-
velopment between domain experts and IT professionals, because they can be
understood differently by members of these two roles. That means the form
storyboard can mediate between the following different viewpoints:

• IT expert view. The IT expert understands a page change as an editable
method call and views server action signatures as method signatures.

• Domain expert view. The domain expert views server action signatures
depicted in a form storyboard as forms.

Of course, the defined viewpoints are not exclusive; they are rather con-
ceptual. The IT expert can further elaborate the informal, incomplete system
specification that is given by a form storyboard. In particular, he or she can
rigorously refine the server action signatures with respect to the concrete type
system of a given technology.

The domain expert view can be fostered by the concept of page image. In
the form storyboard each client page together with its accessible server actions
gives a representation of the page with its interaction options, as is shown in
Fig. 4.5. Therefore each such subgraph is called a page image. Page images
can share server actions, as can be seen in the example of the WelcomeLink
server action.



44 4 Form Storyboarding

Both screen diagram and form storyboards contain information about the
data submitted by the user. However, the form storyboard offers a more sys-
tematic approach. At the same time it obviously provides a more abstract
view of the system interface than the screen diagram. Despite that, the form
storyboard can still be seen as an intuitive high-level prototype of the system
– the reader is asked to consider the page images in Fig. 4.5 once more and
compare them to the screens in Fig. 4.2.

DeleteCartItem
• cartItem

OrderLogin

Order

OrderInformation

OrderLoginForm
• e-mail
• password

PlaceOrder

OrderRegistration

RegistrationForm
• eMail
• fullName
• streetAddress
• city
• state
• zip
• country
• password
• repeatedPassword 
• cardType
• cardNumber
• expiration
• cardholder

OrderRegistrationLink

WelcomeLink

Search
• searchItem

WelcomeLink

WelcomeLink

WelcomeLink

ShoppingCart

Logout

UpdateCart

• cartItem
• quantity

ViewCart

Logout OrderChangeLink

Fig. 4.5. Page images



4.2 Form Storyboards 45

ShoppingCart

DeleteCartItem
cartItem

OrderLoginOrder

OrderInformation

OrderLoginForm
e-mail
password

PlaceOrder

OrderRegistration

OrderRegistrationLink

WelcomeLinkSearch
searchItem

WelcomeLink

WelcomeLink

er
ro

r 
oc

cu
rr

ed

er
ro

r 
oc

cu
rr

ed
user

already
logged

in

OrderRegistrationForm
eMail
fullName
streetAddress
city
state
zip
country
password
repeatedPassword 

cardType
cardNumber

expiration
cardholder

UpdateCart

cartItem
quantity

Fig. 4.6. Form storyboard annotated with interaction information

4.2.3 Widget Annotations

Form storyboards can be further supported as a tool for efficient communica-
tion with the domain expert if they are annotated with information about the
interaction type used for submitting the form parameters. Figure 4.6 shows
the form storyboard with such widget annotation. It differs from the form
storyboard version in Fig. 4.4 in the icons preceding the parameters. In the
example, we have used the following icons:

• Empty square. An empty square indicates a text input field.
• Empty rhomb. An empty rhomb indicates a combobox.
• Empty circle. An empty circle indicates a hidden parameter.
• Star. A star indicates an input field for hidden texts, i.e., passwords.



46 4 Form Storyboarding

Of course, further annotations for other typical widgets like checkboxes,
radiobuttons or multiple select fields can be declared.

4.2.4 Message Storyboards

A message storyboard is a form storyboard. However, in addition to the form
storyboards we have discussed so far, in a message storyboard not only the
types of the server action, but also the types of the client pages are presented.
For this purpose we use the same notational elements as before, i.e., the bullet
list, bordering and double bordering. However, we immediately give an exam-
ple with so-called presentation annotations. A presentation annotation is the
analogue to a widget annotation – it is an icon that gives information about
how a data item is presented on a screen.

Consider the message diagram in Fig. 4.7. It directly corresponds to the
form storyboard in Fig. 4.6 but this time client pages are depicted by flowchart
display symbols [154, 84, 161, 162]. In the example we have used the following
presentation annotations:

• Exclamation mark. An exclamation mark indicates a display of the data
item.

• Solid square. A solid square indicates a default value of an input field.
• Solid rhomb. A solid rhomb indicates a default selection of a combobox.
• Solid circle. A solid circle indicates a hidden parameter. Hidden parameters

are not explicitly displayed on the screen. However, they are presented
implicitly in a different manner, typically by the existence of selection
options – see Sect. 5.3.2 for further discussion.

Consider the shopping cart client page in Fig. 4.7. The signature descrip-
tion exploits the possibility of nested grouping; together with its presentation
annotations it expresses the following. A shopping cart screen shows informa-
tion about several cart items. The information relating to a cart item consists
of one ore several author names, a title, a pre-selected quantity, and a price
– plus a reference to the shopping cart item. Author names, titles, and prices
are simply displayed. The displayed quantities serve as the default values for
input fields, i.e., the update operation offered on the shopping cart screen.
References to shopping cart items, which are needed by the update opera-
tion and the delete operation, are not explicitly displayed. However, they are
appropriately grouped with the other attributes.

In Fig. 4.7 we can adhere to an easy naming convention with respect
to default values. A default value carries the name of the parameter of the
targeted server action, preceded by the term “default”.



4.2 Form Storyboards 47

DeleteCartItem
cartItem

Order

OrderLoginForm
email
password

PlaceOrder

OrderRegistrationLink

Search
searchItem

WelcomeLink

OrderInformation
! fullName
! streetAddress
! city
! state
! zip
! country
! cardType
! truncatedCardNumber
! expiration

! authorName

! title
! quantity
! price

! totalPrice

2

1

1 user already logged in
2 error occurred
3 error occurred
4 shipping details
5 payment method

OrderRegistration
! errorMessage 

defaultEmail
defaultFullName
defaultStreetAddress
defaultCity
defaultState
defaultZip
defaultCountry
defaultCardType
defaultCardNumber

defaultExpiration
defaultCardholder

WelcomeLink

3

OrderLogin
! errorMessage

defaultEmail

ShoppingCart

cartItem

! authorName

! title
defaultQuantity

! price

OrderRegistrationForm
eMail
fullName
streetAddress
city
state
zip
country
password
repeatedPassword 

cardType
cardNumber

expiration
cardholder

4

5

UpdateCart

cartItem
quantity

Fig. 4.7. Message storyboard



5

Formcharts and Dialogue Specification

In form-oriented analysis an information system is modeled as a submit/re-
sponse style system interface that is related to a layered data model. In this
chapter we explain the form-oriented view of information system models. We
explain the constituent parts of information system models, i.e., dialogue mod-
els, layered data models, and dialogue specifications. The notion of a user
message system model is introduced, which narrows the modeling of informa-
tion systems to the exchange of messages between the user and the system.
We define the concrete notations which will be used in the examples, i.e., the
formchart, a textual class model format, and a concrete dialogue specifica-
tion language. Finally, the concepts described are used to model our running
example – the online bookshop.

5.1 Form-Oriented Information System Models

A form-oriented information system model is the description of user sessions.
A system with a form-based user interface can have an arbitrary number of
open user sessions at each point in time. An open user session is an ongoing
communication with the system. It is the task of the system modeler to choose
an appropriate user identification scheme and to model the user session. The
user session is assumed to take place on a virtual terminal. If a session is open
on the virtual terminal, then the virtual terminal shows a client page instance.
As long as a user session is open, it alternates between two kinds of states,
the client pages and the server actions.

5.1.1 Components of an Information System Model

In form-oriented analysis an information system is modeled as the user inter-
action with a submit/response style system interface. It is modeled using a
bipartite typed state machine that is tightly integrated with a layered data
model and annotated with a dialogue specification [92, 97] – see Fig. 5.1.



50 5 Formcharts and Dialogue Specification

User Message Model

Referring

Reuse

Reuse

Shared
Model

Signature Definition

Dialogue Model
Dialogue

Specification

Information Model

Opaque Identity Model

Referring

Fig. 5.1. The information system model of form-oriented analysis

The state machine needs to be bipartite because the user interaction with
the system, i.e., the dialogue, is a sequence of interchanging client pages and
server actions. The state machine part of an information system model is called
the dialogue model in the sequel. The several model elements of a dialogue
model can be annotated with dialogue specification expressions. The dialogue
specification narrows the set of possible dialogues, and specifies the exchanged
messages and side effects of the system’s transactions.

The data model is layered because it describes both the messages that
are exchanged during human–computer interaction and the server system
state with respect to a well-defined interrelationship. The layering of the data
model is oriented towards proven multi-tier system architectures, which tar-
get data independence for enterprise applications by exploiting today’s mature
database technology. The difference between data that are exchanged between
the user and the server system on the one hand and data that make up the
server system state on the other should not be neglected. On the contrary,
in everyday tasks the modeler needs well thought-out concepts to account for
the necessary interplay between these two kinds of data. In this chapter, for
example, the concepts of opaque identity and cloning are elaborated for this
purpose.

The data model, see Fig. 5.1, consists of four packages, i.e., the user mes-
sage model, the opaque identity model, the information model, and the shared
data model. The user message model describes the messages that are ex-
changed between the user and the system. It defines the signatures of client
pages and server actions, i.e., there is a one-to-one correspondence between



5.1 Form-Oriented Information System Models 51

the user message types and the dialogue model states. The information model
describes the server system state. The shared data model is an auxiliary model
that serves as a record type repository for the purposes of reuse and the def-
inition of cloning mechanisms. The opaque identity model is used to create
a well-defined relationship between the user message model and the informa-
tion model. Opaque identities does not only make sense as opaque references
to complex information objects. They can be used as independent identities,
namely in order to identify messages with each other. This leads to the concept
of the pure form-based paradigm, which is explained in the next section.

5.1.2 User Message System Models

A user message system model is an information system model without an
information model. The pure form-based paradigm states that it is possible
to model a form-based information system solely as the user interaction with
a submit/response style system interface. In a full information system model
some complex persistent data are also modeled. A full information system
model is oriented towards ubiquitous system architectures. Furthermore, the
existence of an information model can help to structure the system. However,
we argue that modeling merely in terms of the messages that are exchanged
is also very natural – a completely unsuspecting domain expert is not aware
of a database schema; he or she understands the system only in terms of the
submitted and received data.

The pure form-based paradigm can be seen as the elaboration of the con-
cept of a paperless office. The only function of the form-based paradigm is to
create a container for all documents within an organization. The state of the
organization’s database is completely expressed as a collection of documents.
Important here is that our basic interface metaphor gives us a precise concept
for the relation between the user’s view and the system. The documents in
the system are exactly the screens and forms the user has seen or sent. The
screen is what the user sees when he or she initially receives the screen, while
the form is the edited screen at the moment of submission. A form in this
view has to be imagined as a copy of the client page, with the input fields
filled-in as well as a tick mark at one of the submit buttons, indicating that
this form was submitted, and hence indicating the user’s intention. The term
“document” denotes a form or a screen.

The system view is therefore comparable to an archive. It is impossible
to change the documents in the archive. Moreover, it is not even possible to
see the documents themselves once they are in the archive. If the information
is requested, the archive always creates a new screen. By definition these
documents are immutable because they represent the information that was on
a screen at a certain time. The paradigm supports, of course, the connection
between these forms and can offer different ways to see the joint information
in the presentation, either as a result of the change, or as the old version
beside the change.



52 5 Formcharts and Dialogue Specification

The organization of the documents within the archive is fully transparent,
as we know from databases. This means that, since we have no direct access,
we do not know the organization principle. We have, however, a powerful
query mechanism, offering simple as well as advanced searches in the archive.
According to our paradigm the query as well as the results are again mes-
sages. The user may, however, dislike this inflation of the document base by
insignificant and rather informal queries and searches. But there is no need
to change the fundamental paradigm, since we can get rid of the garbage.
The users simply can write a token “informal” on all unimportant requests.
Then we can assume that all queries are augmented simply by the condition
neither to return forms containing these tokens nor to return answers to these
forms. With this mechanism it is even possible to create arbitrarily elaborate
classifications of communications with the system.

The paradigm has been purely untyped so far. Now we again perform the
same step as in the case of the form-based interface, we introduce types. We
want to view the data model of the untyped case as a treelike semi-structured
format. The introduction of types can be seen not as a change in the data
model but a change in the query language, or a usage pattern of the query
language.

Additionally, we also want to assume that types come with enforcement
by the system, i.e., that the system accepts only type correct inputs and only
returns type-correct answers. But again this, in a principled approach, can
be delegated to the query language. This leads to a new development for the
form-based client, which will give rise to an important concept in the next
chapter, the so-called client output constraint. In a typed paradigm we want
only correctly filled-in forms to be allowed. Such a condition can be enforced
by the browser technology. It is, however, also conceivable to have it enforced
by the central system.

The pure form-based paradigm fits in well. In such a paradigm the data
have a dual status; they are seen as embedded in the forms, but at the same
time they are inherently separated by the fact that the forms are style sheets
for pure data types. It is a case of an easy and inherent separation of con-
tent and representation. They do not usually include the possibility of casual
annotation, although this can be added, and there are advantages in this.

One could think that one would need no client pages, but only a mighty
search engine. But this would repeat the SQL problem. SQL involved the
notion that we would only have data in tables and a natural-language-based
mighty search engine. Note that the language designers of SQL originally
wanted to give it the acronym SEQUEL – Structured English Query Lan-
guage [211].

The data model is nothing more than the reuse of the data structure in
the various forms in the system. The forms are the views in which the user
understands the system. The data model can be understood as doing nothing
more than mediating between the different forms in the system. Hence one



5.1 Form-Oriented Information System Models 53

can see that in principle the data model does not need its own state; its
information is contained in the messages.

We want to take a closer look at the central features of the form-based
paradigm we have outlined so far. One feature is the archiving of all business
communication. Archiving is persistence plus immutability. The second fea-
ture is support for types, in the form of server-side checks. The third feature
is the structured editor. This concept replaces client-side checks on submis-
sion with local modality, i.e., at one place in a text only certain interactions
are allowed. One natural feature is that the structured editor also supports
protected regions, i.e., constant parts of the text. One astonishing fact is that
with this notion the formchart can be subsumed under the structured editor;
the formchart in its interpretation as a state history diagram – see Sect. 13
– can then be read immediately as the document type, which represents the
possible logs of a browser session. The browser can be seen as the application
of the structured editor to the document type. The sending of the message
has to be modeled as well and this hints at a possible extension of the editor
principle: in the future, one wants to understand special purpose editors as
library functions for one general editor instead of being separate applications.

5.1.3 Modeling Active Content

It is possible to allow for modeling page updates that are caused by the system,
i.e., pushed updates under the umbrella of a single client page state. A typical
example is the inbox in a mail system. The inbox page shows the list of received
mails. A desired behavior is that incoming mails are immediately shown to
the user by appending them to the list. Pages which offer such an update
caused by the server we call pages with active content. Form-oriented analysis
allows only for the augmentation of the currently shown information object.
The inbox is an example of a list which receives additional elements. Another
example is the disabling of single selection options in a list. The active content
does not violate the overall system metaphor of form-oriented analysis: page
change is triggered by the user. The active content is conceptually on the level
of the page interaction of the user. Page changes cannot be triggered by the
system.

Active content can be explicitly modeled, e.g., by indicating it with amper-
sands at expressions of the dialogue specification. Active content is typically
necessary only in a small number of places. A typical system model would put
all the active content in separate features. Sometimes a menu feature has an
active component specifying a single flag which is visible on all pages, e.g., a
flag indicating new mail.

5.1.4 Notations for Information System Models

Different notations – textual, visual or mixed formats – can be defined for
the components of form-oriented information system models. Table 5.1 sum-
marizes the components of information system models and the notations that



54 5 Formcharts and Dialogue Specification

we propose in this book to document these models. The formchart that we
introduce in Sect. 5.2.1 will not suffice to describe an information system
model completely. It must be accompanied by appropriate documents that
describe the layered data model. This is also true for the several diagrams
that have been proposed in Chap. 4, i.e., page diagrams, screen diagrams,
form storyboards, and message storyboards.

Table 5.1. Form-oriented inormation system models and possible documentations

dialogue model

+

user message model

+

opaque identity model

+

information model

+

shared model

+

dialogue specification

dialogue model

+

user message model

+

opaque identity model

+

dialogue specification

Model

Components

page diagram: client page nodes connected by branching transitions

screen diagram: client page nodes connected by branching transitions,  
representative example screens added to the client page nodes

form storyboard: a formchart with form types visualized inside server 
action nodes 

message storyboard: a formchart with form types visualized inside server 
action nodes and report types visualized inside client page nodes  

page/screen/storyboard diagrams: dialogue specification is typically 
informal and is drawn as annotations directly in the diagrams

Exemplary

Partial 

Documentation

formchart + class diagrams:

formchart / message types, opaque 
identities, information types, as well 
as shared types specified in text 
documents / dialogue specification is 
typically formal and specified in a 
separate document

formchart + class diagrams:

formchart / message types and 
opaque identities specified in text 
documents / dialogue 
specification is typically formal 
and specified in a separate 
document

Exemplary

Complete

Documentation

Full Information System ModelMessage System Model



5.2 The Dialogue Model 55

5.2 The Dialogue Model

In this section the elements of the dialogue models used in form-oriented anal-
ysis are described. We also explain how dialogue models are depicted by form-
charts.

A dialogue model is a user interface model. The user interaction with the
system is a sequence of interchanging client states and server states. A client
state presents information to the user and offers several options for entering
and submitting data. Client state and client page are used synonymously. A
client page is parameterized. In fact it represents a possibly infinite set of
potential client page instances, i.e., the screens that are actually presented
to the user. The signature of a client page serves as an abstract description
of the information presented to the user. A single screen shows the user a
message from the system. A message from the system has two important
aspects: on the one hand it is an actual parameter that conforms to the client
page signature; on the other hand it is conceived as a report in the sense of
Sect. 2.1.6. Beyond the information provided, a client page offers one or more
data submission options to the user. Every transition from a client page to a
server state specifies that the respective client page has a submission option
that calls the respective server action and provides an actual parameter.

By submitting data the dialogue changes into a server state. In the server
state, submitted data are processed and, depending on the current server
system state, the generation of a new client page is triggered, i.e., the server
state is left automatically. Submitting data is conceptually similar to calling
a method, the data being an actual parameter. Therefore the server state is
often called a server action. The transition to a client page is again considered
as the sending of a message, this time executed automatically from the server.

Transitions from a client page to a server action are abbreviated as
page/server transitions. Equally, transitions from server actions to client pages
are abbreviated as server/page transitions. There may be more than one tran-
sition between two given states. Multiple transitions between a client page and
a server action are typically used to submit different data to the same server
action. A common example found in web-based user interfaces is the capabil-
ity to select items by following a link out of a list of links. Multiple transitions
between a server action and a client page are used to visualize a conditional
output in the formchart explicitly.

Each dialogue model state has a unique name. Each transition has a name,
which is unique with respect to a given source state and a given target state.

5.2.1 Formcharts

A dialogue model consists of client pages, server actions, and the transitions
between them. In the formchart, client states are depicted by ellipses, server
states are depicted by rectangles, a page/server transition is depicted by an
arrow from an ellipse to a rectangle, and a server/page transition is depicted



56 5 Formcharts and Dialogue Specification

by an arrow from a rectangle to an ellipse. Figure 5.2 shows a formchart
that models the dialogue of our bookstore. The formchart corresponds to the
bookstore page diagram in Fig. 4.1.

WelcomeLogin LoginForm RegistrationRegistrationForm

CategoryBook

ShoppingCart

ViewCategory

AddToCart

SearchResultSearch

ViewBook

UpdateCart

DeleteCartItem

OrderLogin

Order

OrderInformation

OrderLoginForm

Confirmation

PlaceOrderOrderRegistration OrderRegistrationForm

OrderRegistrationLink

RegistrationLink

Fig. 5.2. A first formchart example

Every formchart element has a name. Ellipses and rectangles must be given
a name by the modeler. Arrows can be given a name by the modeler. If an
arrow is not given a name explicitly, it will have a default name that is derived
from the arrow’s source’s name and target’s name by an appropriate naming
convention that can be given later. With each formchart element a model
element of the same name is introduced. In this discussion it is important
to distinguish explicitly between chart elements and model elements for the
following reason: while the names of the model states are unique and the names
of model transitions are unique with respect to a fixed source and target, too,
this does not mean that the same model element cannot be painted twice
in a formchart. This is because the labels of the formchart elements do not
have to be unique. Formchart elements that carry the same name depict the
same model element. As a result a dialogue model can be depicted by several
different formcharts, distinguished not only by different layout, but also by
the number of chart elements. For example, the two formcharts (i) and (ii) in
Fig. 5.3 depict the same dialogue model.

Repainting a model element can often improve the readability of a form-
chart, e.g., it is necessary in order to avoid painting crossing transitions or
long transitions, or it can be exploited to focus on a certain concept.



5.2 The Dialogue Model 57

Q

E

D

P R

V C

B

S

A

F

Q

E

D

P R

V C

B

S

A

F

BD

R D P B

(i) (ii)

Fig. 5.3. Two alternative formcharts for the same model

5.2.2 Formchart Naming Conventions

The concrete formchart naming conventions are depicted in Fig. 5.4. An un-
named arrow denotes a transition with a default name. The default name
consists of the transition’s source’s name followed by the keyword TO followed
by the transition’s target’s name. It is required that the transition names are
unique with respect to two given states. In order to distinguish transitions
globally a unique global default name is derived from the local transition
name and the names of the states it connects by concatenating them with the
special character > as indicated in Fig. 5.4.

AP
P A

default transition name

P>T

P TO A

P>T>A
global default name

T T>A

default source name default target name

custom name

Fig. 5.4. Formchart naming conventions

We introduce the concepts of transition source name and transition target
name, source and target names for short. These names are needed, for exam-
ple, for writing DCL dialogue constraints, which are introduced in Sect. 5.4.1.
The source and target names are similar to association role names found in
class diagram notations. A certain uniqueness property is required, which is



58 5 Formcharts and Dialogue Specification

important for the state set notation of our method, see Sect. 6.5.1, and again
in the context of dialogue constraint writing: given a state, each source (tar-
get) that is directly reachable by a transition must be identified uniquely by
its source name (target name).

There are also default source and target names. A default source name
is composed of the transition’s source’s name, the special character >, and
the transition’s name. Similarly, the default target name is composed of the
transition’s name, the special character >, and the transition’s target’s name.
An exception to these default naming rules applies for each transition that
has a default name: the source and target names are simply taken from the
transition’s source’s name and target’s name. With the given default nam-
ing convention the above uniqueness property for source and target names is
fulfilled.

5.2.3 Towards Precise Formchart Semantics

In this chapter concrete notations are proposed for the several parts of form-
oriented information system models in order to introduce and discuss the most
crucial aspects of form-oriented models. The definitions in this chapter aim
at being as precise as necessary; however, the definitions of model semantics
in the third part of the book will be considerably more precise. For exam-
ple, Chap. 13 can be used as a reference for the semantics of the dialogue
model while reading the current chapter. In this chapter the dialogue model
is introduced as a typed state machine. In Chap. 13 a typed state transition
machine will be considered as a special kind of class diagram and state visits
are represented as object instances of this class diagram.

In Sect. 5.2.1 we have distinguished explicitly between the formchart and
the model that is depicted by the formchart. When using formcharts for mod-
eling this distinction can be ignored. Formcharts are merely paintings; they
have been introduced as a notational device for user dialogue models. Mod-
els are usually discussed in terms of model elements, i.e., in terms of client
pages, server actions, and transitions, and not in terms of formchart elements,
i.e., in terms of ellipses, rectangles, and arrows. However, a precise distinction
between charts and models can be helpful in order to understand aspects of
model composition.

In Sect. 5.2 the difference between the concept of a client page and its
single client page instances was explained. Client pages form an abstraction
mechanism. Once this is understood, the difference can be de-emphasized in
the following explanations, because a client page represents every one of its
instances. However, as with the formchart’s relationship to the represented
dialogue model, the distinction always becomes important where model and
chart semantics have to be discussed precisely.



5.3 The Layered Data Model 59

5.3 The Layered Data Model

5.3.1 User Message Models

Each state in the dialogue model, i.e., each client page and each server action,
has a signature. The state signatures are defined by the user message model:
for each state there exists a class of the same name in the user message model.
A user message model defines the messages that are exchanged between the
system and the user.

Messages are immutable; they are merely exchanged between the client and
the server, i.e., they are not part of an updatable server system state. The user
message model is a class model. Instances of the user message model classes
(the messages) must form strict hierarchical structures, i.e., they must be
trees. This means that user message model associations must be compositions;
see Sect. 15.2.3 for a detailed discussion.

Because complex messages can be built only by composition, it is possible
to define a clear notion of deep copying, called cloning, of these messages:
cloning of a message yields a complete copy of the old tree as a new tree.
An important point is that messages can contain opaque references to data
entities of the mutable server system state. From the viewpoint of a message
structure these opaque references are treated like objects of primitive type,
e.g., the cloning stops at the opaque references. We delve into the topics of
opaque references and cloning in the following Sects. 5.3.3 and 5.3.4.

We want to regard triggering a server action as a method call. This view
is especially neat, for example, for the conceptual discussions in Chap. 13 and
technological considerations in Chap. 11. The signature of a method consists of
several formal parameters as labeled components. Therefore the signature of a
method is a record type, which can be defined by a class. Similarly the several
actual parameters of a method call can be conceived together as one single
object, which is sometimes emphasized by referring to such a comprehensive
parameter as a superparameter in the sequel.

Consequently we refer to data that are exchanged at the system border
as messages one time, another time as report or form content, as parameter
or superparameter. Each term has its own flavor, emphasizing another aspect
of the exchanged data. This richness of terminology helps from the outset to
mitigate impedance mismatches between analysis and design on the one hand
and between unit system modeling and system data interchange modeling on
the other.

5.3.2 Opaque Identity Models

Our approach uses a symbol concept to facilitate communications. Messages
between communication partners not only contain primitive data, but sym-
bols. These symbols are a type of primitive data, which only allows for check



60 5 Formcharts and Dialogue Specification

on identity. Moreover our query mechanism can return result sets with a cer-
tain symbol efficiently. The symbol concept is important in reaching a clean
high-level model of symbolic computation. Pure identities are not realized
as readable primitive data types, but rather as an independent concept, the
symbol concept.

In the first place, symbols are pure identities for all communication part-
ners. Each communication partner who wants to use a symbol has to set it
in some relation with his or her own information and knowledge base. The
challenge which arises is to prevent the homonym problem, i.e., that the same
symbol is used for things which are supposed to represent two separate con-
cepts. Once more we use the concept of typing. There is an arbitrary number
of symbol types. Communication partners can have their own symbol types,
and only they can create new symbols of this symbol type. This concept is
such an important concept of symbol use that we give it a different name:
opaque identities. Symbols do not refer to any information content. However,
on the contrary, information content can refer to symbols. But in the case of
opaque identities we use symbols in a certain way: the unit system, which owns
the opaque identities, uses only one opaque identity for one object of its own
data model. This is a pattern for the usage of symbols only. But this pattern
allows queries to find an information object using a given symbol. This usage
is identical with the concept of primary keys in databases. The primary key
concept illustrates quite clearly the concept of symbols. The important artifi-
cial primary keys are primitive data type instances without inherent meaning.
They obviously do not refer to anything as such. But a primary key can be
used to find specific rows due to its use in the primary key row of a table.
We view this as an instance of a more general phenomenon. In our view in-
formation has only an operational semantics. It is the information processing
instance which does the interpretation through its procedures.

Opaque Reference Facades

The information model defines the updatable portion of a server system state.
The information model is cleanly separated from the user message model. The
only direct connection between the two models is through an opaque reference
facade, which is part of the opaque identity model. Information entities of the
updatable system cannot be part of messages, but they can be represented
by opaque identities that may be part of messages. If an opaque identity is
used to represent an information entity it is also called an opaque reference.
The concept of opaque reference is the necessary tool that allows constant
data objects like messages to reference instances that are non-constant and
deletable. A constant object could not reference such a deletable object by
a regular reference, since this reference would be removed as soon as the
deletable object is removed. This would obstruct the intended notion of a
constant object.



5.3 The Layered Data Model 61

The notion of opaque references works as follows. For every type in the
information model there is another type in the opaque identity model, which
is called its opaque reference type. The opaque reference types make up the
opaque reference facade of the information system model. For reasons of sim-
plicity we assume a default naming convention, where the type in the infor-
mation model starts with a capital letter as usual, while the opaque reference
type has the same name, but starting with a lowercase letter.

Product
instance

oref

0..1

1..1

product

opaque reference facade

information types

non-deletable

Fig. 5.5. Opaque references in the information model

All information types are connected with their respective opaque reference
types through an association according to the diagram in Fig. 5.5, with fixed
role names oref and instance establishing a naming convention as indicated
in the figure. Note that each instance of an information type has only one
opaque reference instance. Furthermore the following important rules apply:

• Surrogate mechanism. Each newly created information type instance re-
ceives a fresh instance from the opaque reference type. That is, each opaque
reference type acts like a ticket dispenser.

• Durability. An opaque reference is unchangeable. Especially an opaque
reference is itself non-deletable. If the corresponding information type in-
stance is deleted, the opaque reference remains. It then no longer has an
associated information type object, and will never regain one.

The modeler does not have to give the opaque reference type for an in-
formation type and the respective association. The modeler can assume that
they are implicitly introduced for each information type. The notion of opaque
references is particularly strong for modeling submit/response style systems.
Opaque references allow information entities to be identified by parts of a
message. Without opaque references, it would be difficult to define the se-
mantics for updatable information that is sent as part of a message. This is
obvious immediately on the model refinement level of multi-user safe models,
which is explained in Sect. 6.7: is an update of the information considered a
source of error? Or has it to be understood with respect to an encompassing
push model?



62 5 Formcharts and Dialogue Specification

The form-oriented usage of opaque references combines on an analysis
level the ideas behind two important technology concepts, namely hidden
parameters found in web technology and sequencing mechanisms found in
databases.

Opaque references can be used by information types, too. This occurs in
those cases where user input is recorded in the information basis and the
opaque references from the user input are stored as well.

The notion of opaque reference facade just presented is independent of its
concrete definition. It has been elaborated by assuming a facade of auxiliary
types for every information type; however, alternative mechanisms for defining
the concept are possible, e.g., using objects of information types directly as
opaque references and imposing appropriate rules and semantics. However,
all solutions must circumvent certain problems that are discussed in the next
paragraph.

Opaque references are associations between types, which do not follow the
principle of referential integrity. This means that an association link should
not be bound in its lifetime by the lifetime of the linked objects. This re-
laxed condition on associations is hard to fulfill in some modeling approaches,
since these modeling approaches enforce referential integrity for all associa-
tions. The facade approach to opaque references circumvents this problem,
by doubling an entity type. Basically this leads to a doubling of the object
ID’s representing entity instances. One object ID is deleted if the instance is
deleted, the other object ID is never deleted. Other alternatives can of course
vary here, e.g., using different auxiliary types for different message types etc.
The usage of the helper class, which could also be seen as a wrapper class, is
especially important concerning collections of opaque references. In the case
of single opaque references within a message or part thereof, the deletion of
the link could be accepted as an indicator of the deletion of the object. The
constant character of the message would then be harder to understand, but
it would be feasible. However, as soon as a collection of opaque references is
expressed as a simple collection of links within a type, this type can hardly
represent a message. The problem here is that the very information over the
original collection is lost as soon as an object is deleted, so the constant char-
acter of the message would be destroyed.

5.3.3 Information Models

An information model defines the updatable portion of a server system state.
The updatable portion of a server system state comprises the persistent data
as well as the session data. For the duration of the user session the session
data as well as the persistent data are part of the server system state. The
difference between the two kinds of data is that the session data are ephemeral;
they are lost after the user session has ended, whereas the persistent data are
not. The loss of session data after the user session can be modeled explicitly;
they can be modeled by a further partitioning of the information model as



5.3 The Layered Data Model 63

well. However, from a high-level conceptual viewpoint the distinction between
session data and persistent data can be neglected. Of course the modeler wants
to distinguish between these two kinds of data, but note that the modeler
might want to distinguish between other different kinds of data, too. No doubt
an information model can be improved if it is divided up for example into
core data, transactional data, and inventory data. Furthermore session data
are not as frequent as they might seem at first sight. Often typical candidates
for session data actually turn out to be persistent data – the shopping cart
content is a good example of that. In the following explanations no distinction
is needed between session data and persistent data.

The information model contains a classical data model. Note that we aban-
don use of the term semantic data model. Our information model is about
describing data that are stored in a structured way in an information system,
not about describing real-world objects. For a discussion of the real-world
modeling metaphor see Sect. 9.4.

5.3.4 Shared Data Models

Especially in the case where we have a complex record containing lots of
attributes, there is a third useful model: the shared model. A shared model
contains type definitions that can be used in the user message model as well as
in the information model. The task of this model is to allow the maintenance of
these signatures on a single spot. The shared model must follow the structural
rules of the user message model in order to be used in message type definitions.
Instances of the shared model types are immutable if they are part of messages.
The shared model fosters reuse; beyond this it enables advantageous cloning
mechanisms, so that data can be easily copied from the updatable information
state to messages and back via shared types of the shared model.

With respect to reuse the shared model is merely a pattern which addresses
common modeling problems and hints at the actual usage of the method.
The method of form-based description is designed to support reuse wherever
possible. It will be obvious that the message definitions of the formchart and
the definitions in the persistent data model will have some lengthy record
definitions in common. The shared model is the result of the pattern of singling
out pure data record definitions. The shared model types are usually records
that are flat lists of primitive data, which are needed in the information model
as well as in the dialogue model. It is of course desirable to separate these
record definitions and to access them in the user message model as well as in
the information model. This enables us, for example, to insert a field for a fax
number into an existing person data record resulting in a consistent change
of the whole data model.

The other topic directly related with the shared model is the topic of
cloning. Cloning is the copying of a data record, i.e., the creation of a new
entity instance with the same data content, but with another identity. Cloning
is a vital concept in a message-based paradigm, since message sending can



64 5 Formcharts and Dialogue Specification

and should mean the sending of clones in many instances. It is a crucial point
of the method that it distinguishes strictly between the concept of sending
a reference, then called an opaque reference, and sending a clone. Often a
modeler hesitates to use a cloning operation, not least because cloning is
not a supported concept within many modeling languages, which implies the
manual description of clone operations and their manual maintenance, which
can easily grow into a maintenance nightmare. In our method it is possible
to support cloning based on the notion of the shared model. Given a used
dialogue specification language, auxiliary semantics for its expressions can be
defined with respect to the shared model in order to provide an appropriate
deep copying mechanism. The usage of cloning is an essential ingredient of
real-life modeling.

The shared data model can be seen as having no state. It has of course
many entities in the running system, but these are always weak entities, i.e.,
part of other composite entities outside the shared model.

5.3.5 Chosen Class Model Notation

The form-oriented data model is given in terms of class models. The concrete
terminology has been chosen for convenience, because it is ubiquitous and
fits current object-oriented technology, on which the more technology related
parts of the book rely. Of course every algebraic data type specification lan-
guage that supports sum-of-product data types as well as recursive domain
equations can serve for the purpose of data modeling. In any case, i.e., in-
dependent of the data specification language used, the semantic differences
between the different data model packages must be defined. In Chap. 7 we
will propose our own stripped-down relational notation for class models.

In the examples presented in this book, only a small data kernel of class
models is used to describe data models. We only use classes with attributes,
navigated associations, and multiplicities. We often do not even use class
diagrams, but a simple ad hoc textual format for class models, which is
indentation-based [190]. Each attribute is written together with its type and
multiplicity on its own row indented below the name of the class to which it
belongs. If an association is navigable from a source class to a target class, its
target role is used as a further attribute of the source class. Role names are
derived from class names unless they are explicitly given by the modeler. It
is the usual convention that a class name starts with an uppercase letter and
a derived role name starts with a lowercase letter.

In the chosen notation it is possible to introduce labels for classes. This way
it is possible to distinguish between different kinds of classes. The labels are
written in front of the class name, separated from it by the special character
>. A label also introduces a new namespace, so that two classes from different
kinds of classes can have the same name – as usual, we use dot notation
to qualify items from different namespaces where necessary. We use these



5.3 The Layered Data Model 65

labeling mechanisms to distinguish the types of the layered data model. For
this purpose we introduce the following predefined labels:

• ServerAction for server action types of the user message model;
• ClientPage for client page types of the user message model;
• Information for types of the information model;
• Identity for types of the opaque identity model;
• Signature for types of the shared data model.

Furthermore we need to introduce the label class for class attributes. A
class attribute is a global attribute with respect to a given class. Consider the
class diagram in Fig. 3.9. The data model depicted by the figure is described
in our textual format in the following way:

Information > Category

name: String 1..1

subcategories: Category 0..*

featuredBooks: Book 0..*

Information > Book

title: String 1..1

abstract: String 1..1

price: Amount 1..1

authors: Author 1..*

Information > Author

name: String 1..1

Information > OrderItem

item: Book 1..1

quantity: Number 1..1

Information > Order

orderItems: OrderItem 1..*

buyer: Customer 1..1

Information > Customer

email: String 1..1

fullName: String 1..1

password: String 1..1

address: Address 1..1

cardInformation: CardInformation 1..1

Signature > Address

streetAddress: String 1..1

city: String 1..1

state: String 1..1

zip: Number 1..1

country: String 1..1

Signature > CardInformation

cardType: CardType 1..1

cardNumber: String 1..1

expiration: Date 1..1

cardholder: String 1..1



66 5 Formcharts and Dialogue Specification

5.4 Dialogue Specification

A dialogue specification completes the form-oriented information system
model.

The concept of dialogue is a rather informal concept. For example, in [165]
it is defined as the interaction between a user and a system to achieve a
particular goal. A dialogue consists of dialogue steps, but the term dialogue
is normally not used for a concrete sequence of dialogue steps but rather for
a complete chunk of a user interface, such as the system print dialogue. We
use the term both as a synonym for the behavior of a user interface and in
the narrow sense of an observed interaction sequence.

We introduce the notion of dialogue specification: a dialogue specification
narrows the client page capabilities and specifies server reaction. The overall
notion of dialogue specification contributes the concept of different kinds of
dialogue specification elements. Each dialogue specification element is anno-
tated to a dialogue model element and has a specific meaning with respect to
its kind. The several kinds of dialogue specification elements are summarized
in the following:

• Flow conditions. The flow conditions determine which page is actually
presented to the user after the completion of a server action.

• Server output specifications. A server output specification defines the re-
port that is generated by a server action.

• Client input constraint. A client input constraint is a condition on the
report shown on a client page.

• Enabling conditions. An enabling condition specifies under which circum-
stances a form or link submission capability is actually offered.

• Client output constraints. A client output constraint is a condition on the
data that can be submitted by a form or a link.

• Server input constraints. A server input constraint is a server action’s
precondition.

• Side effect specifications. A side effect specification tells which business
logic is triggered by a server action.

It should be possible to write dialogue specifications with respect to dia-
logue history, i.e., with respect to the states through which a current state has
been entered. Accessing the dialogue history can be exploited for reuse. For
example, consider two client pages that are identical except for a few input
capabilities that depend on the question from which system subdialogue the
client pages have been entered. They can be united in a single client page,
supposing that the distinguishing parts can be made distinct by appropriate
dialogue specifications. Like every good reuse, such proceedings can lead to a
better maintainable and readable model.

Note that the notion of dialogue specification is independent of the def-
inition of a concrete dialogue specification language. It is possible to design
a concrete dialogue specification language from scratch; it is also possible to



5.4 Dialogue Specification 67

build a concrete dialogue specification language on top of an appropriate ex-
isting language. Furthermore, it is possible to provide a dialogue specification
language that is purely declarative or a language that has, in parts, opera-
tional semantics.

5.4.1 The Dialogue Constraint Language

In the bookstore example model in Sect. 5.5 we will use the so-called Dialogue
Constraint Language DCL as the dialogue specification language. DCL is an
extension of the Object Constraint Language OCL [237, 238]. For this purpose
OCL is enriched by new contexts and keywords with appropriate semantics
due to the needs of writing dialogue specifications along the following lines:

• OCL has been introduced to annotate class diagrams. DCL is used to
annotate dialogue models. These two viewpoints are unified by the notion
of state history diagrams discussed in Chap. 13.

• OCL types correspond to UML class diagram types. In our example we use
the textual format of Sect. 5.3.5 for class diagrams. This poses no problems.
The textual format used is also a format for core UML diagrams.

DCL follows a declarative approach. The different kinds of specification
elements are represented by specialized Boolean expressions. These constraints
specify the system by restricting the allowed dialogues and allowed messages.
The different kinds of constraints have different purposes, and are different
with respect to the points in time at which they must hold. The different
kinds of constraints are shown in Fig. 5.6.

P

A

client output constraint
server input constraint flow condition

flow condition

server output constraint

client input constraint
P

enabling condition 

P

A

Fig. 5.6. Formchart notational elements



68 5 Formcharts and Dialogue Specification

Transitions can host DCL constraints as well as states; in terms of OCL
they can be contexts for constraints. Server/page transitions host flow condi-
tions and server output constraints. Server states host server input and side
effect constraints. Client states host client input constraints. Page/server tran-
sitions host enabling conditions and client output constraints. For constraints
and their contexts we use an indent-based syntax again. For each kind of di-
alogue constraint a new key label is introduced that is written in front of the
constraint separated by a colon. For the constraints depicted in Fig. 5.6 the
following syntax would be used:

P TO A

enabling: ocl-expression

clientOuptut: ocl-expression

A TO P

flow: ocl-expression

serverOutput: ocl-expression

A

serverInput: ocl-expression

P

clientInput: ocl-expression

Two other important keywords are added to OCL for the sake of dialogue
constraint writing, i.e., source and target. With these keywords a constraint
can refer to the actual superparameters of the source and target state of the
transition that is annotated with the constraint.

In the subsequent examples it is always necessary to be aware of the fact
that OCL is a three-valued logic: the truth tables of the OCL logic operators
are summarized in Fig. 5.7. The section proceeds by introducing the different
kinds of constraints. A discussion of different kinds of specification languages
is taken up in Sect. 5.4.2.

¬ 1 0 ⊥
0 1 ⊥

∨ 1 0 ⊥
1 1 1 1

0 1 0 ⊥
⊥ 1 ⊥ ⊥

∧ 1 0 ⊥
1 1 0 ⊥
0 0 0 0

⊥ ⊥ 0 ⊥

⇒ 1 0 ⊥
1 1 0 ⊥
0 1 1 1

⊥ 1 ⊥ ⊥

Fig. 5.7. Three-valued logic in OCL

DCL Flow Conditions

Each server/page transition is annotated with a condition. After a server ac-
tion has processed submitted data the flow conditions are used to determine
an outgoing transition. The client page that is targeted by this transition



5.4 Dialogue Specification 69

is now rendered. Server/page transitions that are not given an explicit flow
condition can be assumed to be annotated with the logical constant true as
default. If the flow conditions belonging to a given server action are logically
not mutually exclusive it is not possible to determine always exactly one out-
going transition after server action processing. This means that the dialogue
specification is non-deterministic with respect to the dialogue flow in these
cases, i.e., it is incomplete. It is the modeler’s responsibility to ensure that
the flow conditions are mutually exclusive for a given server action. As short-
hand notation for ensuring deterministic behavior the modeler may number
the outgoing transitions to enforce an evaluation order. Of course this num-
bering can only guarantee deterministic behavior if it is unique and complete.
However, then the notation is analogous to the case constructs found in higher
programming languages.

DCL Server Output Constraints

Each server/page transition is annotated with a server output constraint. This
constraint must hold if a server action is left via a given transition. A server
output constraint is used to specify the report that is presented to the user on a
client page. A natural goal is to specify the report uniquely. It can be achieved,
for example, by equating the actual superparameter of the transition target
to an expression of appropriate type, or by equating the several attributes of
the superparameter to appropriate expressions, possibly conditional in each
case.

DCL Client Input Constraints

A client page can be annotated with a client input constraint. This constraint
must hold if a client page is rendered. It is used to define properties that must
hold for all actual client page superparameters, independent of which server
action they are provided with. Each of the relevant server output specifica-
tions must not contradict the client input constraint. In a declarative dialogue
specification language like DCL a client input constraint is just a shorthand
notation for server output specification parts that are common to all tran-
sitions targeting a given client page. A client input constraint is logically
conjoined to the server output constraints of all these transitions.

DCL Enabling Conditions

Each page/server transition can be annotated with an enabling condition.
Omitting an enabling condition is the same as annotating it with the logical
constant true. An enabling condition narrows the submission capability that
is given by a page/server transition. Only if the enabling condition holds is
the link or form represented by the transition actually offered to the user.



70 5 Formcharts and Dialogue Specification

Note that, on a certain level of abstraction, it does not matter how a disabled
link or form is actually rendered. It may simply disappear from the page, it
may be shadowed, or just functionally disabled.

DCL Client Output Constraints

Each page/server transition can be annotated with a client output constraint.
This constraint must hold if a client page is left via a given transition. A client
output constraint is used to define properties that must hold for all actual
parameters that are submitted to a given server action. Actual parameters
that are constrained by a client output constraint must not be editable and
be correctly provided, e.g., as hidden parameters, or a client-side check must
prevent data not fulfilling the constraint from being submitted. An important
usage of client output constraints is to relate submitted data to data that are
represented on a client page. For example, they can be used to specify that a
certain actual parameter must be provided by selection from a data set offered
on a page.

DCL Server Input Constraints

Each server action can be annotated with a server input constraint. This
constraint must hold if a server action is invoked. A server input constraint
can be used to indicate that the system is not yet completely modeled with
respect to the system’s behavior on violation of this constraint. In a further
refinement step the server input constraint can be replaced by flow conditions
or client output constraints.

DCL Side Effect Specifications

In the context of DCL we do not prescribe how to specify the data processing
associated with a server action, i.e., the side effect on the system data state.
Every ad hoc pseudo-code notation may serve for this purpose. For exam-
ple, an SQL-like data manipulation pseudo-code notation could be used. This
pseudo-code would use three types of directives: insert, delete, update. Note,
however, that from the standpoint of form-oriented analysis these operations
are deliberately informal in contrast to the other DCL constraints.

In DCL we offer a constraint label sideEffect, which is used to host
OCL expressions or appropriate pseudo-code describing the side effect. If the
label hosts an OCL expression, this expression has to be understood as a
postcondition, i.e., it must hold after completion of the server action. No
extra mechanism for precondition specification has to defined: precondition
specifications can be subsumed completely under postcondition specifications
given the operator @pre.



5.4 Dialogue Specification 71

Annotations for side effects can be made in all contexts of form-oriented
analysis, on states as well as edges. A typical context is a server/page transi-
tion. Such a side effect specifies the state change under a certain flow condition.
The side effect annotation has of course the full transition context, i.e., it can
access the source as well as the target. An unconditional side effect of a server
action can be specified in the server action itself.

DCL Cloning

In order to support the issue of cloning as discussed in Sect. 5.3.4 we assume
an overloaded operator

o1->isClone(o2)

for each type of the class model. The operator isClone tests if two compared
objects have the same attribute values, i.e., if they are clones. The operation
is especially useful in side effect specifications to compare data that have been
gathered by the dialogue with data that are stored by the server system state
via shared data model types.

DCL Accessing the Dialogue History

For the purpose of accessing the dialogue history we introduce the notion of
dialogue path expressions and the new property along in DCL.

A dialogue path expression simply consists of transition source names con-
nected by dot notation. It represents a part of a dialogue history, given by a
sequence of visited states. Such a path expression can be exploited in DCL
expressions only by applying the property along to it. The property along
evaluates to true if the current model state has been entered through the
states specified in the path to which it is applied. Consider the formchart in
Fig. 5.8. The following enabling condition evaluates to true if the states C, R,
F, and S have been visited before the client state P has been entered, i.e., if
C after R after F after S:

P TO A

enabling: C.R.F.S->along

We introduce a wildcard notation that is needed for flexible dialogue con-
straint writing. A dialogue path expression without wildcards stands for ex-
actly one dialogue history. With the wildcard notation it is possible to define
a set of visitable states. The syntax is to put the visitable states in braces,
separated by commas. Such an expression stands for the set of all possible
dialogue histories consisting of visits to the fixed states. Such a wildcard can
be used as part of a dialogue path expression.



72 5 Formcharts and Dialogue Specification

Consider the transitions emphasized in Fig. 5.8. The dialogue path expres-
sion

P.{C,R,F}.S

represents all dialogue histories that start in S, navigate arbitrarily over the
states F, R, C and eventually end in the client state P.

P

B

C

D

Q

E

F

G

AP TO A

S

R

Fig. 5.8. Meaning of path expressions in the formchart

DCL path expressions and their semantics are dealt with in Chap. 13 in
more depth. An even more general wildcard notation for path expressions will
also be proposed in Chap. 13.

5.4.2 Dialogue Specification Languages

There are a number of languages that would be appropriate for the purpose
of elaborating a dialogue specification language. Each concrete specification
language has to elaborate precise semantics for the different dialogue spec-
ification elements. But before that it has to define the relationship between
the specification expressions and the data model. In principle, so-called model-
oriented specification languages [148] like Z [171] and VDM [25] can be used as
the basis for a dialogue specification language as well as data query languages
like SQL [58]. Of course the several possible languages differ with respect to
the effort needed for elaboration and must fit or be adapted to the chosen
notion of data model. For example, the constraint language OCL already fits
the class model approach used in this chapter. There are a couple of query
languages that aim at reaching a higher level of data modeling and querying,
e.g., [38, 42, 80, 108, 110, 111, 202, 216, 251, 261, 274, 300]. The purpose
of the languages DAL and TDAL in Chap. 7 is to provide a parsimonious
relation-based notion of data modeling, querying, and constraint writing.



5.4 Dialogue Specification 73

In the concrete dialogue specification language DCL described in Sect. 5.4.1
we have chosen to represent all dialogue specification elements by Boolean ex-
pressions. This is an easy and consistent approach. However, at second sight
it has its pitfalls. Take the server output specification as an example. It could
be simply specified by an appropriate expression of the type of the targeted
server action. Specifying it by a Boolean expression has its implications. First,
the specification is more clumsy because it has to explicitly equate the output
to the desired result. This is actually not the problem. The problem is that
that approach is more susceptible to ambiguity. The modeler is free to give
loose specifications like stating that an integer parameter is greater than a
certain value. The modeler is even free to give constraints that are not at
all tight to the server output, constraining for example the side effect of the
preceding server actions. This generality can be considered advantageous or
disadvantageous. However, it is not obvious in any case how constraints of
such a general constraint approach can be exploited with respect to the no-
tion of executable specification. Similar discussions can be held for the server
input, client input, and client output constraint. DCL flow conditions and
DCL enabling conditions are closer to the notion of executable specification
because they are more straightforward transcriptions of the respective dia-
logue specification elements. Correct DCL flow conditions and DCL enabling
conditions can always be reused more or less directly in the implementing
code.

DCL is an extension of OCL. OCL is a model-oriented specification lan-
guage, which is currently widely discussed [53]. For example, there are dis-
cussions on how to use OCL as a query language [4] and how to use it for
the specification of business rules [81]. OCL is an integral part of the UML
specification [237]. The notion of OCL expression is tightly coupled with UML
class diagrams. Moreover OCL constraints are used in the UML metamodel-
ing semantics approach in order to specify well-formedness rules for diagrams.
OCL has a rich feature set and rich informal semantics. For example, it sup-
ports path expressions similar to those found in the Object Query Language
OQL [42]. OCL cannot be regarded as a formal language [65]. The seman-
tic ambiguities [125] become even more complex to handle because of the fact
that OCL is a three-valued logic. Efforts to give formal OCL semantics are, for
example, given in [260, 43]. In [237] the semantics of the declarative language
OCL are partly based on operational semantics specified in an imperative
pseudo-code.

In DCL we did not conclusively define how to specify side effects. OCL
offers means for specifying updates with the postcondition constraint stereo-
type, which uses a rudimentary temporal logic [254] given by the modal op-
erator @pre. However, this calculus may easily lead the average modeler to
non-operational specifications without any need. Take the following example
specification for a side effect from [314]:

post: customer=customer@pre->including(c)



74 5 Formcharts and Dialogue Specification

For example, the following is a useful shorthand notation for the above spec-
ification:

insert customer c

We argue that deviating from a purely declarative style of constraint writ-
ing can be justifiable. Pre/postcondition specification [247, 217, 218] can be
clumsy if the modeler is forced to give semantics over and over again to a
basic, i.e., not business-specific, operational phenomenon – like insert, up-
date, or delete. If such an operational phenomenon occurs ubiquitously in the
system’s functionality then why not extend the specification language by a
non-declarative language construct? That is exactly what is done in Sect. 7.3
by the TDAL language by adding a clear-cut operational layer on top of the
declarative DAL language.

5.5 The Bookstore Formchart and Data Model

In this section we partially model the bookstore example from Chap. 3 with a
form-oriented information system model. We use the textual format for class
models defined in Sect. 5.3.5 for describing the layered data model. We use
the concrete dialogue specification language DCL defined in Sect. 5.4.1. The
section follows the structure of Sect. 3.1. The several formchart diagrams in
this section can be considered parts of one whole formchart that completely
describes the dialogue model. Figure 5.9 shows a complete formchart for the
bookstore. This formchart has a certain normal form: server actions are dou-
bled so often as necessary to entirely decouple the client page nodes from each
other in the painting. If we call the painting of a client page with all the server
actions directly connected to it its action set chart, Fig. 5.9 is an assembly of
the action set charts of all the bookstore client pages.

At several points in this section we delve into the details of different model-
ing alternatives. At other points we choose to prefer concrete modeling alterna-
tives over other alternatives without even explicitly mentioning and discussing
the alternatives. This text is concerned with creating a semantical framework
for enterprise applications. Every method, just like every programming lan-
guage, allows for different styles of usage. Fixing a concrete style guide is
therefore an important topic in every project, but cannot be the topic of
this book. First and foremost, fixing each and everyone would contradict the
descriptive approach which we follow in this book. Moreover, if the level of
abstraction is too low, the target of elaboration simply becomes unreachable.
If we nevertheless discuss modeling alternatives on a detailed level at some
points in this section this is not done in its own right, but rather to support the
arguments in other, more conceptual parts of the book such as the discussion
of complete and executable specification in Chaps. 7 and 14.



5.5 The Bookstore Formchart and Data Model 75

Welcome

Search

ViewCategory

ViewCart

Logout

RegistrationLink

ChangeLink

ViewBook

LoginLink

Category

WelcomeLink

AddToCart

Login

ViewCategory

ViewCart

Logout

RegistrationLink

ChangeLink

LoginLink

Logout

Search

ViewCategory

ViewCart

ShoppingCart

LoginLink

Registration

RegistrationLink

ChangeLink

Book
ViewBook

SearchResult
Search

WelcomeLink

AddToCart

WelcomeLink

AddToCart

ViewCart

Logout

RegistrationLink

ChangeLink

LoginLink

Search

UpdateCart

OrderInformation

Order
WelcomeLink

ViewCart

Logout

OrderChangeLink

OrderRegistration

OrderChangeLink

WelcomeLink

LoginForm

LoginForm

LoginForm RegistrationLink

WelcomeLink

RegistrationForm

RegistrationForm

PlaceOrder

OrderLogin

Order WelcomeLink

OrderLoginForm

OrderRegistrationLink
OrderLoginForm

OrderLoginForm

WelcomeLink

OrderRegistrationForm

OrderRegistrationLink

OrderRegistrationForm

WelcomeLink

ViewCart

Logout

RegistrationLink

LoginLink

AddToCart

Search

RegistrationForm

ViewBook

Search

WelcomeLink

Logout

UpdateCart

Order

Search

DeleteCartItem

DeleteCartItem

ChangeLink

ViewBook

Confirmation

PlaceOrder WelcomeLink

Logout

OrderRegistrationForm

Fig. 5.9. Complete formchart for the bookstore example



76 5 Formcharts and Dialogue Specification

5.5.1 Login, Registration and Logout

The formchart in Fig. 5.10 is a partial description of the bookstore’s login and
registration features. The formchart encompasses all the interaction options
offered by the system’s login page and registration page. The two respective
links from the welcome page to these pages are also taken up in the formchart.

Welcome

Login

LoginLink

LoginForm

Registration

RegistrationLink

RegistrationForm

WelcomeLink

Logout

Fig. 5.10. Login, registration and logout feature of the online bookshop

Consider the client page Login and compare it to the login screen in
Fig. 3.2. The client page is interconnected by page/server transitions with
three server actions representing the three options the user can choose from,
i.e., submitting login data and aborting the login process via a link to the wel-
come page or via a link to the registration page. The server action LoginForm
is triggered upon submission of login data. Its signature is given by the fol-
lowing record:

ServerAction > LoginForm

email: String 0..1

password: String 0..1

The server action LoginForm processes the submitted e-mail and password
strings. It is connected by conditional server/page transitions with the client
page Welcome on the one hand and the client page Login again on the other
hand. If the user has forgotten to provide an e-mail address or password, or if
there is no user with the submitted e-mail address or if the password does not
match the e-mail address, the server action branches back to the Login client
page. In this way it sends an appropriate error message and the submitted



5.5 The Bookstore Formchart and Data Model 77

e-mail address to the client page. The transferred e-mail address is needed as
the default value for the e-mail form field. The client page Login must have
an appropriate signature as follows:

ClientPage > Login

errorMessage: String 0..1

defaultEmail: String 0..1

Flow Conditions

The conditional branching of the server action LoginForm is specified by the
following flow conditions. The type Customer stems from the appropriate class
of customer data records in the information model.

LoginForm TO Login

flow: source.email->isEmpty

or source.password->isEmpty

or Customer->allInstances->

select(email=source.email)->

select(password=source.password)->isEmpty

LoginForm TO Welcome

flow: not source.email->isEmpty

and not source.password->isEmpty

and not Customer->allInstances->

select(email=source.email)->

select(password=source.password)->isEmpty

The above flow conditions also cover cases where there is more than one
customer in the system with a certain e-mail address. Though these cases are
considered wrong in our bookstore example, because the e-mail address should
serve as an identification of the customer, the above flow conditions are not
concerned with this problem. The restriction is enforced somewhere else, typ-
ically within the scope of the specification of the registration error handling
or by an appropriate class invariant as a static alternative. For example, con-
sider the flow condition from the server action LoginForm to the client page
Welcome. With respect to the password mismatch problem it requires only
that there exists at least one customer with the given e-mail address that has
the given password. The flow condition relies on the fact that there is at most
one customer with the given password, i.e., that this is enforced somewhere
else.



78 5 Formcharts and Dialogue Specification

Server Output Constraints

The data transferred from the server action LoginForm to the client page
Login are specified by the following server output constraint:

LoginForm TO Login

serverOutput:

if source.email->isEmpty and source.password->isEmpty

then target.errorMessage="forgotten e-mail/password !"

else

if source.email->isEmpty

then target.errorMessage="forgotten e-mail !"

else

if source.password->isEmpty

then target.errorMessage="forgotten password !"

else

if Customer->allInstances->

select(email=source.email)->isEmpty

then target.errorMessage="no such user !"

else target.errorMessage="email/password mismatch !"

endif

endif

endif

endif

serverOutput:

if source.email->isEmpty

then target.defaultEmail=""

else target.defaultEmail=source.email

endif

Consider how error messages are handled in the above example. One could
argue that from a conceptual modeling viewpoint it is not appropriate to use
real message strings as flags for the several errors. In a real project you would
like to model the type of the error message attribute abstractly as a type –
even in coding you would introduce error codes and separate them from the
error messages. However, the selected solution is appropriate for the purpose
of a compact example. The default data transferred from the server action
LoginLink to the client page Login are specified by the following server output
constraint:

LoginLink TO Login

serverOutput:

target.errorMessage=""

and target.defaultEmail=""

Because the transition from LoginForm back to Login covers all the possi-
ble errors, the output constraint is a nested conditional construct. As an alter-
native it is possible to exploit an evaluation order annotation for flow condi-
tions. Compare Fig. 5.11 with Fig. 5.10: the single transition from LoginForm
to Login is replaced by a couple of new transitions.



5.5 The Bookstore Formchart and Data Model 79

Login LoginForm

forgottenEmailPassword

forgottenEmail

forgottenPassword

noSuchUser

passwordMismatch

2.

3.

4.

5.
6.

Welcome1.

Fig. 5.11. Conditional server/page transitions

In Fig. 5.11 each of the different possible errors is represented by an own
server/page transition that is named after the respective error. It is a matter of
taste which of the two solutions is considered the better. In the latter solution
the need for more transitions is in opposition to the decreased complexity of
the resulting flow conditions. The case differentiation for the errors is mapped
to the flow conditions of the several server output constraints:

LoginForm > forgottenEmailPassword > Login

flow: source.email->isEmpty and source.password->isEmpty

serverOutput: target.errorMessage="forgotten e-mail/password !"

and target.defaultEmail=""

LoginForm > forgottenEmail > Login

flow: source.email->isEmpty

serverOutput: target.errorMessage="forgotten e-mail !"

and target.defaultEmail=""

LoginForm > forgottenPassword > Login

flow: source.password->isEmpty

serverOutput: target.errorMessage="forgotten password !"

and target.defaultEmail=source.email

LoginForm > noSuchUser > Login

flow: Customer->allInstances->

select(email=source.email)->isEmpty

serverOutput: target.errorMessage="no such user !"

and target.defaultEmail=source.email

LoginForm > passwordMismatch > Login

flow: true

serverOutput: target.errorMessage="email/password mismatch !"

and target.defaultEmail=source.email

Server Input Constraints

The above described way of how errors of submitted login data are handled
by the system is only one of several possible alternatives. If the modeler has
already identified the possible mistakes, but does not want to decide how they
are handled, the server input constraint is the right place to specify them.
Consider the following input constraint for the server action LoginForm:



80 5 Formcharts and Dialogue Specification

LoginForm

serverInput:

not source.email->isEmpty

and not source.password->isEmpty

and not Customer->allInstances->

select(email=source.email)->

select(password=source.password)->isEmpty

The above input constraint introduces the assumption that the submitted
login data are correct. That is, the server action LoginForm can rely on them
and the special error handling can be dropped from the specification. This
means that the transition back to the client page Login can be deleted with
all its constraints and that the flow condition of the transition to the client
page Welcome can be set constantly true, too: actually the new server input
constraint is identical to the flow condition that formerly led to the welcome
page. The system specification has become incomplete in the sense that it
has to be refined in a further refinement step by describing an error handling,
which is sketched in Fig. 5.12 for yet another possible example refinement.
However, at the same time the system specification remains robust in the
sense that knowledge about the incompleteness is encapsulated in the server
input constraint.

This means that introducing a server input constraint for a server action
can be considered as giving it the status TBD, i.e., “to be defined”, in the
sense of [158].

Login LoginForm

forgottenEmailPassword

forgottenEmail

forgottenPassword
noSuchUser

passwordMismatch

2.
3.

Registration

PasswordError

5.

6.

LoginLink

4.

Login LoginForm

Refinement
• dropping server input constraint
• adding transitions
• adding flow conditions

Welcome

Welcome

1.

RegistrationLink

Fig. 5.12. Refinement of a server input constraint



5.5 The Bookstore Formchart and Data Model 81

As an abbreviation for the above server input constraint it is possible to
define a signature with more constraining multiplicities for the attributes of
the server action LoginForm:

ServerAction > LoginForm

email: String 1..1

password: String 1..1

LoginForm

serverInput:

not Customer->allInstances->

select(email=source.email)->

select(password=source.password)->isEmpty

With the new signature the server action can assume that an e-mail address
and a password are provided. This means that we can subsume the concept
of multiplicity of a server action’s attribute under the concept of server in-
put constraint. This is an arbitrary choice. Equally well one could define such
constraining of a multiplicity as a shorthand notation for client output con-
straints. This would be in accordance with the more general observation that
a type is a data restriction, that each server action signature is a restriction
on the data submitted to the server, and that each client page signature is a
restriction on the data sent to the client.

Client Output Constraints

The question whether an error is actually handled by server-side or by client-
side processing can be considered as too low-level from an analysis viewpoint.
However, if it is desired to distinguish between client-side and server-side han-
dling, client-side handling can be specified, for example, by employing a client
output constraint. This way, it is possible to specify client-side processing for
the pure form field validation of our login form:

Login TO LoginForm

clientOutput:

not target.email->isEmpty

and not target.password->isEmpty

LoginForm

serverInput:

not Customer->allInstances->

select(email=source.email)->

select(password=source.password)->isEmpty

Now, it is required that the targeting client pages are “responsible” for
really providing data. We delve into the technological issues of this topic in
the Sects. 11.1.3 and 11.1.5.



82 5 Formcharts and Dialogue Specification

Server Output Constraints

If the data submitted to the server action LoginForm are correct, the dialogue
flow is branched to the client page Welcome. The welcome page displays the
name of the logged-in customer, therefore it has the customer name as a
parameter. Actually the page Welcome exists in two versions. Depending on
whether the customer is logged in or not, it offers different interaction options
and displays different headlines. Therefore the page has a further Boolean
parameter to indicate whether the user is logged in:

ClientPage > Welcome

loggedIn: boolean

customerName: String 0..1

featuredBooks: FeaturedBook 0..*

Compare the above signature with the welcome screen in Fig. 3.1. The
welcome screen shows a list of recommended bestsellers. Therefore, the signa-
ture Welcome has an attribute of type FeaturedBook, which is given in the
following Sect. 5.5.2.

The server output constraint for the transition from LoginForm to Welcome
ascertains that the loggedIn bit is set and the correct customer name is dis-
played on the welcome page:

LoginForm TO Welcome

serverOuptut:

target.loggedIn=true

serverOuptut:

target.customerName=Customer->allInstances->

select(email=source.email)->

asSequence->first.name

As discussed for the flow conditions of the server action LoginForm, the
above constraint is written for the general case where there might be more
than one customer with the given e-mail address. The server output constraint
allows us to select an arbitrary customer matching the e-mail address because
it assumed that there is exactly one such customer. Similarly the matching of
the password is not a concern for the server output constraint because this is
already ensured by the respective flow condition.

The effect of the server action Logout is modeled by the following server
output constraint:

Logout TO Welcome

serverOuptut:

target.loggedIn=false

serverOuptut:

target.customerName=""



5.5 The Bookstore Formchart and Data Model 83

Enabling Conditions

If the user is not yet logged in, the links to the login page and the registration
page are offered. If the user is logged in, a link to logout is offered. In order to
specify this, the concept of enabling conditions is used in the following way:

Welcome TO LoginLink

enabling: not source.loggedIn

Welcome TO RegistrationLink

enabling: not source.loggedIn

Welcome TO Logout

enabling: source.loggedIn

Modeling a Dialogue Status

The loggedIn bit in the signature Welcome does not have to be understood
as being actually displayed. It is used to model a status of the dialogue. With
respect to the current status the welcome page is rendered differently, in the
simplest case distinguished through the welcome headline. A user is logged in
or logged out. A lot of pages depend on it. As a matter of course there are
alternatives to model these two basic dialogue states. Some modelers would
perhaps like to introduce session data indicating if a user is logged in and
which user it is.

Information > CurrentUser

class > customer: Customer 0..1

Then constraints can be written with respect to these session data instead
of the actual message parameter. This way of modeling makes the notion of
login more explicit; moreover it is closer to the actual implementation.

Link Signatures

The server actions WelcomeLink, LoginLink and RegistrationLink represent
mere hyperlinks. No data are submitted by following the links. The server
action Logout expects no data, too. Therefore all of these server actions have
the empty record type:

ServerAction > WelcomeLink

ServerAction > LoginLink

ServerAction > RegistrationLink

ServerAction > Logout



84 5 Formcharts and Dialogue Specification

Server Action Side Effects

We consider the registration page shown in Fig. 3.3. The server action Regis-
trationForm provides input capabilities for the e-mail address, the customer
name, the password and its repetition, the address, and the card information.
The client page Registration displays an error message and the data gathered
by RegistrationForm as default values except for the password. The inter-
play of RegistrationLink, RegistrationForm, and Registration is analogous to
the interplay of LoginLink, LoginForm, and Login. The user message model
types RegistrationForm and Registration reuse the signatures Address and
CardInformation from the shared data model:

ClientPage > Registration

errorMessage: String 1..1

defaultEmail: String 1..1

defaultFullName: String 1..1

defaultAddress: Address 1..1

defaultCardInformation: CardInformation 1..1

ServerAction > RegistrationForm

email: String 1..1

fullName: String 1..1

address: Address 1..1

password: String 1..1

repeatedPassword: String 1..1

cardInformation: CardInformation 1..1

The side effect of the server action RegistrationForm could be specified
with the following pseudo-code:

RegistrationForm TO Welcome

sideEffect:

insert Customer x

x.email = source.email

x.fullName = source.fullName

x.password = source.password

x.address->isClone(source.address)

x.cardInformation->isClone(source.cardInformation)

We want the above pseudo-code to have the following meaning: if the
server action RegistrationForm is left via the transition to the page Welcome,
a new information object x of type Customer is generated. This new object
has the data gathered by RegistrationForm as attribute values.

5.5.2 Browsing Books

The formchart in Fig. 5.13 encompasses the browsing feature of the bookstore.
It is possible to visit more and more subcategory pages, to view detailed book
information, and to add books to the shopping cart.



5.5 The Bookstore Formchart and Data Model 85

Welcome

Category

Book ShoppingCart

ViewCategory

AddToCart

SearchResult

1 view a bestseller
2 view a featured book

ViewBook

UpdateCart

DeleteCartItem

1

2

Fig. 5.13. Browsing feature of the online bookshop

Consider the example screen of the client page Category shown in Fig. 3.4.
The following types are introduced in the layered data model for the client
page and its neighboring server actions:

ClientPage > Category

currentName: String 1..1

subcategories: Subcategory 0..*

featuredBooks: FeaturedBook 0..*

Signature > Subcategory

category: category 1..1

name: String 1..1

Signature > FeaturedBook

book: book 1..1

authorNames: String 1..*

title: String 1..1

ServerAction > ViewCategory

selected: category 1..1

ServerAction > ViewBook

selected: book 1..1

ServerAction > AddToCart

selected: book 1..*

The category page shows the name of the current category. It shows a list
of subcategories and a list of featured books. Consider the list of subcategories
first. This list shows the names of the subcategories of the current category.
But the list is not just pure information to the user. For every subcategory
there is a link or a button the user can select in order to reach the respective



86 5 Formcharts and Dialogue Specification

new category page. All the subcategory links together can be considered as a
single input capability triggering the server action ViewCategory. In order to
model this the list of subcategories is represented by a list of tuples. Each tuple
consists of an opaque reference to a subcategory and its name. For this purpose
an appropriate type Subcategory is introduced in the shared model. Then the
server action ViewCategory expects an opaque reference to a category. Note
that the lowercase type of the attribute category in the type Subcategory
and the attribute selected in the type ViewCategory is the opaque reference
type of the corresponding information model type Category, according to the
naming convention in Sect. 5.3.2. The subcategory names are given by String
attributes.

If a category page displays no subcategories, there is no input capability
for triggering ViewCategory:

Category TO ViewCategory

enabling: source.subcategories->notEmpty

The following constraint correctly requires that each category that is
passed to the server action ViewCategory stems from the set of offered sub-
categories:

Category TO ViewCategory

clientOutput:

source.subcategories.category->includes(target.selected)

Now it has to be specified that the correct name of the current category is
displayed and the correct subcategories are offered with their correct names.
This is done by the following server output constraints. Note again that the
notation convention in Sect. 5.3.2 is used and the opaque references are deref-
erenced and referenced with the predefined role names instance and oref:

ViewCategory TO Category

serverOuptut:

target.currentName=source.selected.instance.name

and target.subcategories.category

= source.selected.instance.subcategories.oref

and target.subcategories->forAll(

name=category.instance.name

)

The above constraint is interesting with respect to the relationship of
subcategory references and subcategory names. It is specified that a reference
to a category is encapsulated with the corresponding category name in a
tuple. Following the discussion in Sect. 2.1.6 this is a conceptual description
for the fact that the reference and the name are rendered together in some
way. However, an opaque reference is not really visible. So the grouping can be
exploited to specify that a concrete selected opaque reference actually stems
from a button or link that is correctly labeled with the corresponding name.



5.5 The Bookstore Formchart and Data Model 87

A similar discussion as for the list of subcategories applies to the featured
books of a category. It is possible to view details of featured books and to
add books to the cart. However, in the case of adding books to the cart, it is
possible to select not only a single book, but a couple of books. This multiple
selection capability is realized with a list of check boxes on the page in Fig. 3.4.
Appropriate signatures have been introduced for the server actions ViewBook
and AddToCart; the respective constraints are the following:

ViewCategory TO Category

serverOuptut:

target.featuredBooks.book

= source.selected.instance.featuredBooks.oref

and target.featuredBooks->forAll(

authorNames = book.instance.authors.name

and title = book.instance.title

)

Category TO ViewBook

clientOutput:

source.featuredBooks.book->includes(target.selected)

Category TO AddToCart

clientOutput:

source.featuredBooks.book->includesAll(target.selected)

Now we give the types for the states Book and SearchResult:

ClientPage > Book

detailed: book 1..1

title: String 1..1

abstract: String 1..1

price: Amount 1..1

authorNames: String 1..*

ClientPage > SearchResult

featuredBooks: FeaturedBook 0..*

5.5.3 Shopping Cart

Consider the shopping cart page in Fig. 3.6. With respect to the dialogue
displayed in Fig. 5.13 two actions can be triggered, i.e., to update the cart
with new item quantities and to delete an item from the cart. The following
types are appropriate:

ClientPage > ShoppingCart

cartItems: ShoppingCartItem 0..*

Signature > ShoppingCartItem

cartItem: cartItem 1..1

authorNames: String 1..*

title: String 1..1

defaultQuantity: Number 1..1

price: Amount 1..1



88 5 Formcharts and Dialogue Specification

ServerAction > UpdateCart

update: UpdateCartItem 1..*

Signature > UpdateCartItem

selected: cartItem 1..1

newQuantity: Number 1..1

ServerAction > DeleteCartItem

selected: cartItem 1..1

The shopping cart content is modeled merely by a type CartItem in the
information model:

Information > CartItem

item: Book 1..1

quantity: Number 1..1

Deleting a cart item is actually an update operation on the cart. This yields
a modeling alternative. The server action DeleteCartItem can be discarded if
a new transition from ShoppingCart to UpdateCart is introduced, which is
depicted in Fig. 5.14. This time the client output constraint of the delete
transition must explicitly express that only one opaque reference is selected
by the customer. It must further express that the selected quantity equals
zero.

ShoppingCart > delete > UpdateCart

clientOuptut:

target.update->size=1

and source.cartItems.cartItem->

includesAll(target.update.selected)

and target.update.newQuantity=Set{0}

ShoppingCart

UpdateCart

DeleteCartItem

ShoppingCart

UpdateCart

update delete

Fig. 5.14. Shopping cart feature of the online bookshop



5.5 The Bookstore Formchart and Data Model 89

5.5.4 Buying

The feature of buying books comprises the means of placing the shopping cart
content as an order and offers the user a subdialogue to log in and register.
The feature is sketched in the formchart in Fig. 5.15.

Consider the server action Order. It is merely a link, and is only acti-
vated if the shopping cart displays items; it directs the user to the client page
OrderInformation if the user is already logged in, otherwise it directs the user
to the page OrderLogin:

ServerAction > Order

ShoppingCart TO Order

enabling: source->cartItems->notEmpty

Order TO OrderInformation

flowCondition: CurrentUser.customer->notEmpty

Order TO OrderLogin

flowCondition: CurrentUser.customer->isEmpty

The client page OrderInformation, shown in Fig. 3.7, and page Confirma-
tion need the following signatures:

ClientPage > OrderInformation

shippingDetails: ShippingDetails 1..1

paymentMethod: PaymentMethod 1..1

desiredBooks: Signature.OrderItem 1..*

totalPrice: Amount 1..1

ClientPage > Confirmation

shippingDetails: ShippingDetails 1..1

paymentMethod: PaymentMethod 1..1

boughtBooks: Signature.OrderItem 1..*

totalPrice: Amount 1..1

Signature > ShippingDetails

fullName: String

streetAddress: String 1..1

city: String 1..1

state: String 1..1

zip: Number 1..1

country: String 1..1

Signature > PaymentMethod

cardType: CardType 1..1

truncatedCardNumber: String 1..1

expiration: Date 1..1

Signature > OrderItem

authorNames: String 1..*

title: String 1..1

quantity: Number 1..1

price: Amount 1..1

ServerAction > PlaceOrder



90 5 Formcharts and Dialogue Specification

OrderLogin

Order OrderInformation

OrderLoginForm

ConfirmationPlaceOrder

OrderRegistration
OrderRegistrationForm

ShoppingCart

Welcome

WelcomeLink

OrderRegistrationLink

Fig. 5.15. Buying feature of the online bookshop

Now we wish to consider the subdialogue for login and registration in the
formchart of Fig. 5.15. The subdialogue is identical to the login and registra-
tion dialogue discussed in Sect. 5.5.1 except for its exit points. For the order
subdialogue it is important that finally submitting login data or registration
data results in the client page OrderInformation and not in the client page
Welcome. Therefore new model states are introduced for the order subdia-
logue, tagged with the leading term Order. Types, transitions, and constraints
can be copied from Sect. 5.5.1 and adapted with respect to the differences men-
tioned. It would be desirable not to copy but to reuse the common dialogues
in such a case. This is an example where accessing the dialogue history can
be exploited as will be shown in the sequel.

Consider the formchart in Fig. 5.16. This is the result of merging the
formchart in Fig. 5.15 and the formchart in Fig. 5.10 into a single formchart.
The two corresponding states of the core login and registration subdialogues
have been amalgamated to form a single new state, as indicated by the leading
term New.

Consider the server action NewLoginForm. It has a transition to the page
Welcome derived from the state LoginForm in Fig. 5.10 and a transition to the
page OrderInformation derived from the state OrderLoginForm in Fig. 5.15.
The path to the page OrderInformation must be followed if the login dialogue
has been entered from the order dialogue the last time it was entered; other-
wise, the path to the page Welcome must be followed. This can be specified
by the following flow conditions:



5.5 The Bookstore Formchart and Data Model 91

Order OrderInformation ConfirmationPlaceOrder

ShoppingCart

Welcome

WelcomeLink

Welcome

NewLogin

LoginLink

NewLoginForm

NewRegistration

NewRegistrationLink

NewRegistrationForm

WelcomeLink

Logout

1.

2.

2.

Fig. 5.16. Reuse of the login and registration subdialogues

NewLoginForm TO OrderInformation

flow:{NewLogin,NewLoginForm}.NewLogin.Order->along

NewLoginForm TO Welcome

flow:{NewLogin,NewLoginForm}.NewLogin.LoginLink->along

NewLoginForm TO NewLogin

flow: source.email->isEmpty

or source.password->isEmpty

or Customer->allInstances->

select(email=source.email)->

select(password=source.password)->isEmpty

In the flow conditions we have used dialogue path expressions, the along
property, and the wildcard notation for dialogue path expressions, which were
introduced in Sect. 5.4.1. A similar discussion applies to the server action
NewRegistrationForm. It is debatable which of the above two modeling alter-
natives, i.e., the one represented by Figs. 5.15 and 5.10 or the one represented
by Fig. 5.16, is better. The latter reuses model elements but needs more com-
plex constraints.



92 5 Formcharts and Dialogue Specification

Welcome Registration

RegistrationLink

ChangeLink

Fig. 5.17. Managing user data in the online bookshop

5.5.5 Managing User Data

For modeling the change feature for user data the already existing registration
page can easily be reused. The client page Registration has already input
parameters for default values that can be filled with customer data if the user
is already logged in. As shown in Fig. 5.17, a new link that offers the change
feature must be added to the specification, to complete the already existing
server action RegistrationLink:

Welcome TO ChangeLink

enabling: CurrentUser.customer->notEmpty

Welcome TO RegistrationLink

enabling: CurrentUser.customer->isEmpty

The server action RegistrationLink has to send constant default values to
the page Registration, and the server action ChangeLink has to send user
data. Before turning to the respective server output constraints, recall from
pages 65 and 84 that both the type Registration and the type Customer
reuse the types Address and CardInformation from the shared data model.
Therefore the DCL cloning notation can again be exploited in the following
server output constraint:

ChangeLink TO Registration

serverOutput:

errorMessage=""

and defaultEmail=CurrentUser.customer.email

and defaultFullName=CurrentUser.customer.fullName

and defaultAddress->isClone(CurrentUser.customer.address)

and defaultCardInformation->isClone(

CurrentUser.customer.cardInformation

)

The server ouptut constraint for the transition from RegistrationLink to
Registration must specify all parts of the message parts explicitly. Note that it
is assumed that the type CardType is supported by an advanced widget type,
see Sect. 11.1.8, and therefore can be handled as a basic type with respect to
the definition of the type Registration:



5.5 The Bookstore Formchart and Data Model 93

RegistrationLink TO Registration

serverOutput:

errorMessage=""

and defaultEmail=""

and defaultFullName=""

and defaultAddress.streetAddress=""

and defaultAddress.city=""

and defaultAddress.state=""

and defaultAddress.zip=""

and defaultAddress.country=""

and defaultCardInformation.cardType=CardType.Default

and defaultCardInformation.cardNumber=""

and defaultCardInformation.expiration=""

and defaultCardInformation.cardholder=""

5.5.6 Searching Books

The search feature of the bookstore is visualized in Fig. 5.18. Searching a book
by a given search item in general results in the client page SearchResult. If the
search yields a unique result, the detailed book page is presented rather than
the search result page. With respect to some offered capabilities, the page
SearchResult is quite similar to the page Category. A list of books is offered:
in the case of the page Category a list of featured books; in the case of the
page SearchResult a list of books found by a system search functionality. In
both cases it is possible to choose a single book, in order to view its details,
or to choose a couple of books, in order to add them to the shopping cart.
To give some idea of this similarity the page SearchResult has already been
displayed in Fig. 5.13.

SearchResult

Welcome

Category

Book

SearchResult

ShoppingCart

Book

AddToCart

ViewBookSearch

Fig. 5.18. Search feature of the online bookshop

The formchart in Fig. 5.18 contains all client pages of the bookstore exam-
ple that offer a search capability. A useful shorthand notation for such kinds



94 5 Formcharts and Dialogue Specification

of features will be introduced in Sect. 6.5.1 by the so-called state set nota-
tion. Not only is the page SearchResult reachable uniformly from a couple of
other pages, but actually so are most of the other dialogue states, too, e.g.,
the pages Welcome, Login, and Registration. In this section, the interesting
core dialogue of the bookstore has been discussed. Menu-like capabilities, i.e.,
capabilities offered uniformly on many pages, have been represented once and
dropped on other occasions. The client page Login is a typical example. In
order to explain its transitions to and from the page Welcome it has been
contained in the formchart in Fig. 5.10, but all the other transitions from the
other states have been dropped from the charts presented.

5.5.7 Representation of Widget Types

Form-oriented analysis abstracts from concrete layout questions in the model-
ing of submit/response style systems. Therefore it is important to understand
how we can ascend from layout-centric widgets to an abstract representation
of interaction. In this section we analyze a typical interaction pattern and
discuss how it is represented in client output constraints.

Widgets can be editable fields for primitive types, check boxes, or radio
button lists. Since we deal with the analysis level, the differences between
functionally equivalent widget types are of minor interest. Therefore a list
of submit buttons is equivalent to a single submit button and either a radio
button list or a selection list. Hence single selection lists, radio button lists, as
well as submit button lists are conceived as particular presentations of a single
abstract interaction option, which we call single selection. Check box lists as
well as multiple select lists are considered accordingly as multiple selection.
Whether using single or multiple selection, the user can choose from an offered
collection, which must be part of the client page signature. In case the user
has to choose between a set of primitive values, these values are wrapped as
objects.

Selections in formcharts give rise to a constraint between the offered col-
lection in the client page signature and the selected items that are part of
the addressed server action signature. In that server action signature the pa-
rameter that has to be provided by the radio button list must be part of the
offered collection in the client page signature from which to choose. Such a
client output constraint written in DCL was discussed above in Sect. 5.5.2
where it was used in our example application.

Category TO ViewBook

clientOutput:

source.featuredBooks.book->includes(target.selected)

For simplicity we now consider the following simplified types and con-
straint:



5.5 The Bookstore Formchart and Data Model 95

ClientPage > Category

featuredBooks: book 0..*

name: String 1..1

ServerAction > ViewBook

selected: book 0..1

Category TO ViewBook

clientOutput:

source.featuredBooks->includes(target.selected)

In the type Category the collection of opaque references to featured books
is now the top-level part of the client page signature. The above constraint can
be graphically shown as in Fig. 5.19. In graphical user interfaces, different wid-
get types offer different possibilities for the user to provide information within
a form. In form-oriented analysis, each widget type gives rise to characteristic
client output constraints, which describe the semantics of the respective wid-
get type. We can therefore speak of widget constraints in form-oriented anal-
ysis. A widget constraint is a part of a client output constraint that specifies
one imagined widget of the addressed form. Figure 5.19 shows what implica-
tions such a widget constraint representing a single selection would have. The
class diagram represents a client page and a server action together with parts
of their message types. We consider one of the opaque reference types passed
from the client page to the server action. In order to specify that this should
be a single selection there are two conditions which have to be imposed. The
first condition is that the chosen items – their number is not yet specified –
must indeed be a selection of the offered items. For this purpose we introduce
the intuitive keyword selection as a generic constraint. The formal defini-
tion of this selection constraint is not of interest here; it can best be given
by making use of a novel constraint concept, the concatenation constraints
introduced in Chap. 7. The second property is the specification of the number
of items to choose. This is done by the multiplicity indicated in the figure.
A multiplicity of 1 here specifies a single selection. The multiplicity * would
specify a multiple selection.



96 5 Formcharts and Dialogue Specification

Category ViewBook

Category ViewBook

book

{selection}

1..* 0..1
single selection

no direct input

formchart

message model

opaque reference facade

selected
featuredBooks

Fig. 5.19. Graphical representation of a client output constraint. The subset con-
straint specifies that the chosen information must have been on the page



6

Model Decomposition and Refinement

Models quickly become large. We need a method of partitioning them in order
to manage their complexity and to be able to discuss them with colleagues.
In this chapter we discuss questions relating to the composition and decom-
position of the different types of models introduced so far. We propose con-
crete notational elements that help to organize large models. The composition
mechanisms for the model are especially simple and flexible. A notation for
state sets is introduced that allows for weaving transitions. A notation for
state specialization is introduced that can be used to express dialogue history
dependency. Furthermore this chapter deals with model refinement. Different
detailed refinement stages for form-oriented information system models are
defined. The findings of this chapter are independent of the concrete notation
employed.

6.1 Model Union

The topic of composition is a very important one for the application of a
method. It is here that we meet another very central concept of our modeling
method, the model union. This concept will be of great help in giving clarity
and lightweightness to our whole modeling method. The concept of model
union we describe is extremely simple yet extremely versatile; it is indeed
versatile to the degree that all the composition methods we discuss in this book
will be basically reduced to it! We will discuss a number of example problems
in detail, especially in the area of the decomposition of the formchart, but all
these discussions will be based on the powerful concept of model union. We
first discuss the concept of model union in general; we then go on to discuss
its application to formcharts.



98 6 Model Decomposition and Refinement

The Intuition Behind Model Union

Model union is best understood using the following thought experiment: con-
sider you have been modeling for some time, and your model has reached a
considerable size. You start to realize that it is now too big, and you identify
two rather separate topics, say, end-user interface and administrator interface.
Hence you want to partition your model. But the user management turns out
to be necessary for both topics, and you want this part in both models, not in
a separate submodel. So you now decompose the model into two non-disjoint
parts, both containing the user management. This partitioning can be done,
because you know how to compose the parts again, namely by a union which
is basically a graph union, i.e., the common part is only taken once. The
operation follows the idea of set union.

Monotonic Modeling

Specifying can be conceived as describing constraints on a system. Even the
definition of types has an obvious constraint character. Types enforce type
safety. Moreover they create a vocabulary for the constraints to speak about.

In our modeling we have taken care that all model elements add new con-
straints. Semantically, therefore, the system specification is the conjunction
of all model elements. The associative, commutative nature of the “and” op-
eration ensures that the model elements can be considered in every ordering.
Their interconnection is not realized by their ordering, but by the identifiers
which they share.

The monotonic nature of the “and” operation together with associativity
and commutativity may be seen as the enabling semantic foundation of our
general composition mechanism, the model union. These properties mean that
a model is a set of modeling elements and its natural composition is the set
union.

6.2 Formchart Decomposition

Formchart decomposition can be used to represent, for example, a refinement
step, a generalization, or a specialization. Actually we have already used form-
chart decomposition throughout Sect. 5.5, where all the discussed features
have been submodels of Fig. 5.9.

In Sect. 5.2.1 we have stated that a chart element with a given name can
occur several times in a chart. Model elements have unique names. Chart ele-
ments with the same name denote the same model element. Therefore, given
two charts these can be understood as a single chart immediately. Decompo-
sition can be discussed solely in terms of formchart elements in the sequel.
This is possible because the relation between the chart and the state machine



6.3 Formchart Hierarchies 99

it denotes is given canonically. For example, it can be made precise by in-
troducing a graph-based metamodel for paintings. In such semantics charts
are conceived as graphs, too, and differ from the state machine they denote
only with respect to the possibly multiple naming of graph elements. Then
the relationship between charts and state machines can be formalized as a
factorization of chart elements with respect to identical naming.

A formchart decomposition consists of only two operations:

• partitioning into submodels;
• optional naming of submodels

A formchart decomposition selects arbitrary subgraphs of the formchart
and optionally names them. The first interesting thing about this mechanism
is that the partitioning is really unconstrained. For example, it is not required
that the resulting submodels are connected graphs. It is also not required
that the partitioning is unique; that is, the several partitions may overlap.
It is further not required that the partitioning is complete; that is, some of
the formchart elements do not have to belong to any of the partitions given
explicitly by the modeler. This freedom in choosing partitions is needed for a
feature-driven approach – see Sect. 6.4. In Fig. 6.1 the partitions of a formchart
are defined by bordering. A submodel name is given inside a document label.

A B C D E F G H

iv
v

vii
viii

viii

iii

i

Fig. 6.1. Named partitioning of a formchart



100 6 Model Decomposition and Refinement

A B C D E F G H

A B

B C

E F G H

A B C

D E F F G H

B C D E F G H

v

iv

ii

vii viii

vi

iii

i

Fig. 6.2. Hierarchical formchart decomposition

6.3 Formchart Hierarchies

Formchart decomposition can be used to build a hierarchy; this means that
it can be used to represent “whole to part” relationships between formcharts.
An example is shown in Fig. 6.2. In the figure each formchart decomposition
is visualized by dashed lines from the whole formchart to its part formcharts,
each ending with a dot.

A Flat Decomposition Mechanism

A hierarchy stemming from formchart decomposition is implicitly sound in the
following sense: all model elements present in one of the part formcharts are
present in the whole formchart. However, it is not required that such a hierar-
chy be strict. Formcharts from every level of the hierarchy can be composed
into a new formchart. This is possible because formchart decomposition (par-
titioning and naming) is a flat decomposition mechanism. This means that it
is not hierarchical on its own, because the composition of formcharts is not an
abstraction mechanism: a formchart is itself not a model element! The naming
of a formchart does not introduce a higher level kind of model. This is the cru-
cial difference from common packaging or leveling mechanisms. Management
of models is kept orthogonal to models.



6.3 Formchart Hierarchies 101

1.1Source 1.2

1

S

2.1 2.2

2

S

Source

Sink

flow

flow flow

Sink

Source Sink0

DFD2DFD1

Context DFD

DFD0

Fig. 6.3. Structured analysis: leveled data flow diagram

Consider the leveled data flow diagram in Fig. 6.3. The notational con-
ventions for this diagram stem from structured analysis, as presented in [79].
Processing elements are numbered uniquely, and a dot notation is used to rep-
resent the decomposition of processing elements. We again use the dashed line
notation in Fig. 6.3 in order to visualize chart element decomposition. The
leveling of the data flow hierarchy introduces a strict hierarchy. The compo-
sition of processing elements of one level is really an abstraction: it is used as
a processing element again on a higher level.

A flat decomposition mechanism fosters the viewpoint that one is inter-
ested in only the complete model. The information given by formchart parti-
tioning, naming, and building hierarchies is merely information for the purpose
of managing and communicating the formchart. It can be dropped without
loss of specification completeness: for example Fig. 6.1 is the result of flatting
Fig. 6.2 by dropping the hierarchy. Figure 6.4 is the result of further dropping
the decompostion information. Formchart decomposition allows for maximum
flexibility. For example, several, even overlapping, strands of hierarchy can be
built without conflict on top of the complete system formchart.

A B C D E F G H

Fig. 6.4. A flat formchart



102 6 Model Decomposition and Refinement

6.4 A Feature-Driven Approach

Gathering features is a helpful activity for requirements elicitation [180, 157,
299]. For our purposes, a feature can be defined as: (i) a condition or capability
offered to a user, or (ii) a defined behaviour. In [157] a requirement is defined
as: (i) a condition or capability needed by a user to solve a problem or achieve
an objective, (ii) a condition or capability that must be met or possessed by a
system or system component to satisfy a contract, standard, specification, or
other formally imposed documents, or (iii) a documented representation of a
condition or capability as in (i) or (ii). This means that a feature is a slightly
more general notion than a requirement. A feature is a potential selling point
of a system; whether it adds value to a system or fulfils a contract [158] is not
addressed by the term feature itself. The term feature is a completely product-
related term, whereas the term requirement is already a process-related term.

Features should not be described only in terms of formcharts – for exam-
ple, succinct textual feature descriptions are essential for a good specification
document. Not all features can be expressed by formcharts; this particularly
applies to non-functional system properties. However, it is important that ev-
ery subgraph of a formchart can be used to model a feature. A submodel can
represent a system subdialogue. Of course there should be an agreement be-
tween the stakeholders that a certain subdialogue actually represents typical
system usage.

It is necessary to point out that certain important interaction capabilities
can be modeled easily with submodels of a complete system formchart. An in-
teraction capability that is offered similarly on different occasions, in different
contexts, by several client pages consists of a set of typically loosely coupled
or even uncoupled model states and transitions. In our bookstore example we
find lots of such features:

• login, logout, and registration;
• search functionality;
• back link to the welcome page;
• viewing the shopping cart content.

The notion of use case can be subsumed under the notion of feature, but
not vice-versa. A use-case-driven approach fosters understanding a system as a
set of exemplary interaction sequences. Therefore a use-case-driven approach
does not encourage the modeler to describe a feature like, say, the following:
the user wants to reach an overview page from everywhere.

See how the complete formchart of our bookstore in Fig. 5.9 can be de-
composed into the formchart showing the bookstore core dialogue in Fig. 5.2
and the several additional features in Fig. 6.5.



6.4 A Feature-Driven Approach 103

Registration

OrderInformation

OrderChangeLink

OrderRegistration

Welcome

LoginLink
Login

Category

Login

Book

SearchResult
WelcomeLink

Welcome
Login

Registration

Book

Welcome
Category

ShoppingCart

SearchResult

OrderInformation

OrderLogin

OrderRegistration

Welcome

Logout
Welcome

Category

Logout

Book

SearchResult

Confirmation

OrderInformation

ShoppingCart

Confirmation

Welcome

RegistrationLink

Category

Registration

Book

SearchResult

Welcome

ChangeLink

Category

Change User Data

Book

SearchResult

OrderInformation

View Cart
Welcome

ViewCart

Category

Book

SearchResult

ShoppingCart

ShoppingCart

SearchWelcome

Search

Category

Book

SearchResult

Fig. 6.5. Additional features of the bookstore



104 6 Model Decomposition and Refinement

6.5 State Sets and State Specialization

6.5.1 Modeling Features with State Sets

An important special case of formchart decomposition is the modeling of server
actions that are present on many pages and of client pages that are the result
of many server actions. For example, without using formchart decomposition
appropriately you can quickly clutter a diagram with a menu-like option, i.e.,
an interaction option that is offered on many, perhaps even all, pages.

A new notation element for this purpose is the state set, depicted by a
double-lined state icon. It is annotated by a list of state names and serves as
shorthand notation for these states. An edge between two state sets of, say, m
client pages and n server actions represents the complete graph Km,n between
the elements of the state sets, see Fig. 6.6 for an example.

Fig. 6.7 shows how the mechanism described can be used to improve the
presentation of the bookstore features from Fig. 6.5.

P,Q,R

D,E,F

A,B,CB C

P Q R

D E F

A

Fig. 6.6. Modeling with state set notation

6.5.2 Modeling with Visual State Specialization

Formchart elements of the same name denote the same model element. We now
introduce visual state specialization. The apostrophe is considered as a special
character. It can be appended to a state name. A formchart element with
such a name denotes an instance subset of the corresponging state. It denotes
the subset of state instances that are reachable only via those transitions that
lead to the specialized formchart element. Precise semantics of this notation
are given in Sect. 13.4.

Consider the example in Fig. 6.8. A system is described by two semantically
equivalent formcharts (i) and (ii). The system has two major features, A and
B. Feature A comprises all states having a name starting with an A or starting
with an S. Feature B comprises all states having a name starting with a B or



6.5 State Sets and State Specialization 105

LoginLink,
Logout,

RegistrationLink,
ChangeLink

Login

Login
Logout

Registration
Change User Data

WelcomeLink

Welcome

Welcome

Logout Welcome
ShoppingCart,

OrderInformation,
Confirmation

View Cart

ViewCart
ShoppingCart

Search

Welcome,
Category,

Book,
SearchResult

LoginLink

OrderChangeLink

OrderRegistrationOrderInformation

1 links to LoginLink only exist, if user is not logged in
2 links to Logout  only exist, if user is logged in
3 links to RegistrationLink  only exist, if user is not logged in
4 links to ChangeLink only exist, if user is logged in

ChangeLink
Registration

Welcome, Category, Book,
SearchResult, OrderInformation

Search
Book

Welcome, Category, Book,
SearchResult, ShoppingCart

Login,
Registration, Book, Category,
ShoppingCart, SearchResult,

OrderInformation, OrderLogin,
OrderRegistration,

Confirmation

Fig. 6.7. Using state set notation for the bookstore features



106 6 Model Decomposition and Refinement

Start

A1 A2 A5

B1

A3 A4

B2

S1 S2

S3

S4

S5

B3

Start

A1 A2 A5

B1

A3 A4

B2

S1‘ S2‘

S3‘

S4‘

S5‘

B3

(i)

(ii)

S1‘‘ S2‘‘

S3‘‘

S4‘‘

S5‘‘

End

End

Fig. 6.8. Modeling enabling conditions based on state specialization

starting with an S. At a certain point in each of the features the supporting
subdialogue S may be entered which is the same in both cases. After finishing
the supporting subdialogue, the respective major dialogue is re-entered. The
first description (i) uses the following enabling conditions to specify this:

S5 TO A5

enabled:

S3.S2.S1.A4->along

or S4.S2.S1.A4->along

S5 TO B3

enabled:

S3.S2.S1.B2->along

or S4.S2.S1.B2->along

The second formchart (ii) in Fig. 6.8 makes use of the new state special-
ization. Each of the description styles has its advantages because there are
tradeoffs concerning global and local complexity and ease of understanding
with respect to the whole diagram and a single diagram state. The new no-
tation can be used in the example bookstore to model the reuse of the login



6.7 Model Refinement 107

and registration subdialogue by the order feature along the lines discussed in
Sect. 5.5.4.

6.6 Decomposition of Page Diagrams and Form
Storyboards

In addition to its use with pure formcharts, formchart decomposition can
be used for the page diagrams and form storyboards discussed in Chap. 4,
because all of the diagrams are considered simply as different views or different
visualizations of form-oriented information system models. Of course, the state
set notation and the notation for state specialization can also be used for the
other form-oriented charts.

However, if visual decomposition is applied to page diagrams and form
storyboards some care must be taken with respect to consistency of the sev-
eral chart elements, because these diagrams are based on merging different
kinds of model elements into one document. Take dialogue specifications as
an example. They can conflict if they are directly annotated in a chart. It
has to be considered that a model element can be painted more than once
in a chart. If a transition is painted twice there is a potential conflict with
respect to the annotated comments. What if the comments are different? A
brute-force solution would be to simply forbid it. Another solution would be
to consider the comments as logically conjoined. Though this is possible in
principle, as one might check for the different kinds of dialogue specification
elements introduced in Sect. 5.4, we in general consider it as an antipattern to
make use of this option – it seems too easy to overlook one of the transitions
that plays a part in a constraint. This discussion leads on to the syntax model
approach in Chap. 12 that provides the conceptual framework to overcome
notation-related problems like these.

6.7 Model Refinement

Form-oriented analysis allows for different grades of detail. It does not require
complete specification. We do not confine form-oriented analysis to a single
process model in this book. Instead we provide a set of well-defined incomplete
abstraction layers called refinement stages. Refinement can be defined by using
the notion of feature: a model B is a refinement of a model A iff A is a submodel
of B. We now explain the most important refinement stages:

Signature Model

The signature model contains the complete data model and the complete form-
chart, but no constraint annotations in both diagrams. This model is valuable
as the bare metal model giving the complete structure of the user interface
and the data.



108 6 Model Decomposition and Refinement

Server Input Declared Model and Server Input Safe Model

Server input constraints have been explained as being related to user input
that does not meet the requirements, e.g., the user enters a sum above its
limit. Server input constraints have to be replaced in later stages by branches
from their server sates or by client output constraints. For example, sometimes
the details of processing erroneous data are of minor interest, therefore it is
helpful if their full specification can be deferred. A server input declared model
is a model that contains server input constraints. A server input safe model
is a model where all server input constraints are replaced.

Multi-User Abstracted, Declared, and Safe Model

Typically, submit/response style applications are multi-user systems. There-
fore one has to consider many clients acting on the same data model. Each
client has its own instance of the finite state machine. These instances are
completely independent and interact only via the data model. Single execu-
tions of the server action of different instances of the formchart are considered
as mutually exclusive and not interfering with each other, i.e., the data model
is seen as accessed in a virtually serial manner. This is a helpful viewpoint
for the specification phase, and is fully compatible with later development
stages of typical form-based applications. However, only the single server ac-
tion is executed atomically in this sense. Hence subsequent interaction of the
same user with the system can be influenced by the interaction of other users.
Such effects are therefore called multi-user exceptions. These exceptions are
due to the fact that submit/response style systems are typically based on an
optimistic business logic approach. Well-known examples are systems with
shopping carts. A typical strategy is that the items in the shopping cart are
not reserved for the customer. It is assumed a rare event that the item has
been sold by the time the customer finally wants to buy the contents of the
shopping cart. This assumption is exactly the optimistic assumption, and vice
versa the multi-user exception occurs whenever the optimistic assumption
fails. For many purposes the modeler may want to use a model that abstracts
from such multi-user problems, and therefore does not contain the exceptions
of this type. Such a model, which will be the primary working model, we call
the multi-user abstracted model. The multi-user declared model is the model in
which all multi-user exceptions are excluded by server input constraints. The
multi-user safe model is the model in which these constraints are replaced by
branches leaving server states.

The definition of the multi-user abstracted model is indeed a precisely
defined term if we make use of the decomposition mechanism. A multi-user
abstracted submodel is a model in which each flow condition can be fulfilled
without interaction of another user. Take the submodel which ends after buy-
ing a book. If there is only one user using the bookshop, then no book he puts
into the shopping cart can be bought by another user in the meantime.



7

Data Modeling

Our aim in this book is to develop a precise notion of business logic for sub-
mit/response style enterprise systems. Therefore we are looking for a modeling
approach that singles out business logic. This will encompass business data
modeling and business logic programming. There are many general purpose
modeling languages around. We have seen that these modeling methods can
be used within the fundamental principles of form-oriented modeling. But
they support transactions poorly, a crucial element of an enterprise business
logic paradigm. The aim of general purpose modeling languages is to present
a unified format for all modeling purposes from the outset. Our goal is in
contrast more specific. We want to provide a modeling language optimized
for high-level business logic. If the method turns out to be applicable in other
areas, then this is of course even better! But for now we discuss its use for
business logic. In the case of the data modeling language we are of course con-
cerned with business data. Later we introduce the access language for these
models, which is then used to define business logic as functionality.

A data model describes the static structure of the state of a system. The
well-known conceptual modeling languages like ER and UML happen to be
similar with respect to their underlying semantics, which are relational. ER
and UML are nevertheless sometimes considered more conceptual than the
simple relational calculus. This can be seen by the fact that naive waterfall
processes for database development proceed from conceptual modeling to re-
lational modeling. There is certainly a demand for an explanation why this
upgrade for the mentioned languages to the conceptual class is justified. The
ER and UML communities appeal to intuition.

We, however, look for scientific arguments that a modeling language of-
fers an important abstraction concept beyond the relational model. We call
our modeling language the parsimonious data modeling language. Its mod-
els are called PD models for short. The language for accessing these models
is called DAL (Data Access Language). PD and DAL abstract from an im-
portant implementation aspect, the implementation of relation types. A PD
model can be translated into different relational models, using one of a set of



110 7 Data Modeling

known standard relational mappings of the relation types. They are explained
in Sect. 7.2.2. Our modeling language abstracts from these mappings because
all of these mappings can be used for the implementation of DAL queries.

In Chap. 5 we developed the form-oriented modeling method, and we
pointed out that the main contributions of this method are independent of the
underlying data modeling method. We demonstrated how UML and OCL can
work in this context. The main disadvantage of the UML/OCL combination is
that OCL does not foster executable specification in our terminology it is not
a high-level programming paradigm. This is a drawback since for the specifi-
cation of form-based enterprise applications, high-level programming is a very
natural specification paradigm. DAL is designed as a high-level programming
language, which can be easily translated into standard platforms for trans-
actional enterprise applications. The PD modeling language is a convenient
data modeling foundation for DAL.

Concepts behind DAL

Since the PD modeling language is designed to be a business data modeling
language we need a data access language which is equally fitting for business
logic, and which will be called DAL. This language will also address an is-
sue that is even more general than business logic programming, and this is
high-level programming. High-level programming is a specification of business
logic which is known to be executable. What is allowed in concrete high-level
programming can be said to depend on the current state of technology. In our
case one of the crucial contributors for providing a high-level programming
language on the given abstraction level is the relational database technology
with their mature relational model.

The PD model is accessed through DAL. This access language has the task
of defining queries and updates on the PD model. In principle both types of
operations, queries as well as updates, are characterized as functions. That
is, the updates are state transition functions. If updates are viewed as state
transition functions, then the type of the return value must contain the new
system state. This state transition view will be present only in a very implicit
manner in the update expressions. The update expressions rather will have
the form of commands, namely the commands update, insert, delete. Besides
the new state they always return a result, i.e., the affected part of the object
net. The information content of this result is always sufficient to reconstruct
the state before the update. Queries in contrast do not affect the system state.

It is important to set these properties of the access language in relation
to the definition of transactions as state transition functions. First of all one
should distinguish those transactions which never change the system state,
and those which may change the system state. Note here that we talk about
static properties of code, not about a single execution event. This distinction
is omitted in many discussions on the matter. In a particular execution an
update command can of course remain without affecting the system state.



7.1 The Parsimonious Data Modeling Language 111

The property of being an update refers to the fact that it is deployed as an
update, i.e., all code is divided into updates and queries. We will discuss such
static properties under the notion of style formats. This distinction can be
statically checked by looking at the primitives used in the code.

7.1 The Parsimonious Data Modeling Language

As we have indicated, the PD models can be seen as simplifications of UML
and ER models. A PD model in our approach is described by a mathematical
object, its so-called model graph. Because we conceive PD model graphs as
mathematical objects, the visual representation is not prescribed. We prefer
a visual notation which is similar to graph notation. Furthermore we use
the textual notation introduced earlier as well. The reader is, however, free
to choose his or her own visual representation. The set of all PD models of
course forms a language, we call it the PD modeling language.

7.1.1 The PD Model Graph

A PD model consists of entity types, relation types, and roles. An entity type
has entity instances. A relation type is a predicate which says whether a
number of entity instances are thought of as being connected. Each role role(a,
t) is connected with one relation type a and one entity type t. The model graph
is defined to be a tuple (E, P, R, e, p), where E is the set of entity types, P is
the set of relation types, and R is the set of roles. e : R �→ E, p : R �→ P are
the functions giving for each role its entity type and its relation type.

The number of roles of a relation type is called the arity of that relation
type. The entity types of the roles of a relation are called the entity types
connected by the relation type.

The data model of our example bookshop is presented in Fig. 7.1 as a PD
model. For example, the entity types Book and Category are connected by a
relation type. The role featuredBooks is the role of Book in this relation. Each
PD model is a kind of bipartite graph, where the roles serve as edges. However,
there can be multiple edges between two nodes: roles have an identity.

The relation types with arity 2 are the most common in data models. We
call data models which use only binary relation types binary PD models, BPD
models for short. We strongly favour BPD models in practice. However, in this
fundamental discussion we also introduce higher arities, since they virtually
come at no cost, and they will be exploited in the semantics part. In the
following we will discuss only binary relation types for the sake of simplicity.

Between two entity types there can be an arbitrary number of relation
types. Especially for the cases where the relation type is between an entity
type and itself (which is allowed), we need roles to model the connections of
the relation type with entity types.



112 7 Data Modeling

CardInformation
CardType

name String

authors

title
Book String

abstract
String

Amountprice

Author 

subcategories

String

Customer

streetAddress

Address

String

city
String

String
state

Number
zip

Order

OrderItem

Number

quantity

cardNumber
String

Date
expiration

Stringcardholder

name

cardType

orderItems

Category

buyer

featuredBooks

item

email String

fullName

password

String

String

String
country

address
cardInformation

Fig. 7.1. The data model of the bookshop as a PD model

In the PD model the entity types, relation types, and roles are identities;
nevertheless we will use names to refer to them. However, in PD diagrams,
these names are not part of the formal apparatus. They are just a kind of
comment, while we identify concepts by their identities. This aspect will be
elaborated in Chap. 12.

The static semantics of a PD model are the set of all the possible states
of this model. An entity type represents the collection of all entity instances.
Entity instances are opaque identities. Each entity type is assumed to be a
repository, i.e., a countably infinite set of entity instances. We call an entity
instance that has never been used before a fresh entity instance.

In each state a relation type is represented by a finite relation between
the connected entity types. A relation type can be viewed as a relation which
changes through time, which means the relation type can represent a different
relation in each state.

The relation consists of tuples of entity instances from the connected entity
types. These tuples are called links. Two entity instances of the connected
entity types which appear in a link are called linked. If (s, t, . . . , x) is a tuple



7.1 The Parsimonious Data Modeling Language 113

in relation type a, then we say s is a partner of t along a and vice versa.
The entity instances in the tuple are called the targets of the link at the
specific role. The relation type between Book and Category can, for example,
be used in a query about which books are in a given category. The relation
type itself allows every book to be connected with possibly every category. If
the modeler decides that each book should belong to only one category, he or
she can use a multiplicity. A multiplicity is a special constraint. Constraints
are an independent concept themselves, which is explained in Sect. 7.4.

The dynamic semantics of a PD model describe the possible updates on
the state of the PD model. Updates are the transition from one state to
another. As one can see from this definition, updates make sense only in the
context of a typed automaton model of the system. Then the system changes
its state through updates, while the PD model remains the same. There are
three important notions of updates: primitive updates, DAL updates, and
transactions. The primitive updates are simply the insertion or the deletion
of a single link between two entity instances. The operation insert of link l
on relation type a, insert(a, l) means that a becomes a ∪ {l}. The delete of
link l on relation type a, delete(a,l) means that a becomes a \ {l}. Whether
an insertion or deletion takes place depends on the previous state. The DAL
updates will be the updates that are the effect of a single expression in DAL.
The transactions are complex updates which are still executed atomically.

An entity type can represent a record type. In this case associated entity
types represent the attributes of the record type. The main purpose of the
entity type within the method is that different entity types are separated.
The rationale behind the PD model is that a record is not represented as
an entity instance alone, but as the entity instance together with a number
of links that connect it to entity instances of other entity types. A typical
operation in the business domain is the insertion and deletion of a complete
data record. This deletion is also modeled as a deletion of links, i.e., there is no
special operation necessary for the deletion of the entity itself. The operation
of deleting a record is realized as the deletion of all incident relation type links
which belong to its state.

An relation type path is a path of relation types in the PD model. A
relation type has two directions, each in the opposite direction of the other.
Each direction has a forward role and a reverse role. A direction path is a
directed path of directions. Two direction paths are isoterminal if they have
the same initial and terminal entity type.

7.1.2 Textual Notation

The textual notation can be used for PD models as well. All class definitions
of the bookstore example can be read as entity types. The attributes rep-
resent associations. Their role name is the attribute name in one direction
and the record type name in the other direction. Note that in the following
pseudo-code examples we are very informal with respect to names since these



114 7 Data Modeling

names are only placeholders for identities. In that sense our textual formats
are deliberately informal because we want to concentrate on the abstract rep-
resentation behind it.

7.1.3 Primitive Types

Primitive types are entity types, but have additional available operations.
Primitive types are part of the language definition; in other words, the lan-
guage comes along with a set of primitive types. It is very useful to make a
distinction between those properties of the language that are independent of
the set of primitive types and those that are not. In the case of our model-
ing approach, as well as in many other languages, the language is in principle
conceivable with different sets of primitive types. Therefore this set of types is
in a sense like a parameter of the language definition. We often use primitive
types of SQL 99 as primitive types.

7.1.4 Submodels

A model B is a submodel of model A if the entity type sets, relation type sets,
and role sets are subsets accordingly. All relation types in A which connect at
least one entity type from B, but are not included in the relation set of B, are
called external relation types of B in A. If an external relation type has one
connected type not contained in B it is called outgoing. An external relation
type can, however, have all connected entity types from B, but still not be
contained as a relation type. It is then called a detouring relation type.

A direction of a (binary) relation type is simply identified with a role
of that relation type. The role itself is also called the targeted role of the
direction; its counterpart is called the role from which the direction starts.

A subsystem is a submodel with a set of directions on external relation
types, the external references set. All directions contained in this set must
start in the subsystem. Only one direction of each detouring relation must be
contained in the external references set.

7.2 The Data Access Language DAL

We present here the Data Access Language for our PD model as a modification
of SQL. Given that this turns out to be a viable option, we see it as a favorable
solution and an added value to the reader since it simply applies a well known
and well understood language instead of defining a new one from scratch
without need, like other methods may do. We want to point out that this is
not an endorsement of the rather old-fashioned syntax of the SQL language.
The syntax of SQL is debatable, but this debate is simply a different one
from that discussed in this book. Note that we do not claim that the data



7.2 The Data Access Language DAL 115

modeling approach presented here is proven to be highly intuitive; we assume
here that the well established language SQL is sufficiently understandable.
The real aim of our approach to the data access language is to deliver benefits
to maintainability in case the model changes. For the following we assume
some familiarity with SQL [170].

In DAL it is allowed to use entity type names instead of roles. This is
very convenient for unnamed roles. In the case of the textual notation for
data models we have typically one named role on a binary association. We
want to agree on a naming convention for the other roles so that we have
an alternative to the pure entity type name for ambiguities. This is quite a
convenient approach because we then have a very consistent naming scheme.
The association itself is named like the role from the textual format with suffix
”Rel”. The opposite role of e.g. buyer in Order is named orderAtBuyer. This
reminds us that we leave the entity type at the role buyer and go to the entity
type Order. With this naming scheme the textual notation becomes a simple
and efficient tool for rapidly creating PD models.

7.2.1 Understanding SQL Queries

SQL queries are very similar to the expressions of relational calculus. They can
be seen as having a certain normalized form. In an SQL query we first specify
a so-called labeled product of an arbitrary number of tables. The labeled
product (also called dependent product) is similar to a Cartesian product,
except that the elements are not tuples, but records, i.e., functions from an
index set to elements according to the type of the index. Then we perform a
selection on this structure according to a Boolean expression. Finally we use
a combination of a projection and the computation of new rows, giving the
so-called result clause. In the case of the use of aggregate functions there are
additional steps, which we will discuss later.

The syntax of the SQL query is as follows:
SELECT (result clause, written with colons) FROM (labeled product, with

colons) WHERE (Boolean expression for selection)
We call the labeled product of the tables the initial selection base.
The concept of structural joins is not explicitly addressed in SQL, but

it is helpful to consider it for our own deliberations. Within the selection
expression (the WHERE clause) there are expressions which define structural
joins beside the other parts. Structural joins are expressions which equate
foreign keys with the primary key of the referenced table.

It is helpful to look at the difference between the case where all tables are
connected through structural joins and cases with different groups of tables
where each group is connected within but the groups are disconnected between
them. In the first case each element of the selection base is a structurally
connected set of table rows. In the latter case a full Cartesian product is only
formed between the joint selection bases of the single groups.



116 7 Data Modeling

The result set of an SQL query is a single table. It is implicitly clear that
this table is in first normal form since the whole PD model of SQL databases is
first normal form. But together with the fact that the result of an SQL query
is always only one table it implies that the table often violates the second
normal form. This will be overcome in DAL.

name String

authors

title
Book String

abstract
String

Amountprice

Author 

Customer

Order

OrderItem

Number

quantityorderItems

buyer

item

email String

fullName

password

String

String

Fig. 7.2. A submodel of the bookshop

7.2.2 Mapping Parsimonious Data Models to Relational Models

SQL can be used for specifying queries, updates, and constraints on the data
model. We propose a minimal modification of SQL for our purposes. Each
PD model can be mapped onto a relational database schema in the SQL data
description language SQL DDL. There are two important mappings of this
kind, the direct mapping and the compact mapping, yielding the direct model
or the compact model. The direct mapping maps every relation type to a table
and every role to a row. We do not need tables for entity types. This is almost
a mere syntactic transformation since it follows simply the straightforward
semantics of the PD model. Note that the direct model has no NULL values
in the tables. The entities could be represented by an arbitrary type suitable
for artificial keys, we choose the type Number. We will assume an unlimited
set of new data types for this purpose.

The compact mapping merges relations based on multiplicities. As an input
it takes a combination of a PD model and a set of major multiplicities on this
model. It maps each such combination onto a relational model. For any entity
type MyEntity with at least one single attribute it creates a table MyEntity
with an artificial primary key myEntityId. All single attributes become rows
named after the roles of the attribute. If a lower multiplicity is 0, then the
row can contain NULL values. We call the star-shaped group of entity types



7.2 The Data Access Language DAL 117

which is mapped to such a table a record. We call the central entity the record
entity type of the record. The table on which it is mapped is called the record
table. The information on 0..1 to 0..1 relation types (and stricter combined
multiplicities) is contained in two tables. Each table has a row with a foreign
key to the other table. Each of these rows is called the sibling row of the other.
The fact that the relational model is a so-called first normal form is of course
expressed in the compact mapping. Fig. 7.2 shows a cutout of the example
bookshop. The compact model for this cutout contains the following tables.
They are given in a peseudocode for relational schemata.

Book( bookId: Number primary key,

title: String,

abstract: String,

price: Amount)

authorsRel( authors: Number references Authors.authorId,

bookAtAuthors: Number references Book.bookId)

Author( authorId: Number primary key,

name: String)

OrderItem( orderItemId: Number primary key,

quantity: Number,

item: Number references Book.bookId,

orderAtOrderItems: Number references Order.orderId)

Order( orderId: Number primary key,

buyer: Number references Customer.customerId)

Customer( customerId: Number primary key,

email: String,

fullName: String,

password: String)

In this example the compact model contains only one table from the direct
model, namely the table authorsRel. If we want to get a quick overwiew over
the relational structure, the compact model can be represented in the textual
format but with single attributes only, either 0..1 or 1..1. This can be seen as
the first-normal-form translation of the textual notation. We use a new label
Table in order to avoid misunderstandings.

Table > Book

title: String 1..1

abstract: String 1..1

price: Amount 1..1

Table > authorsRel

authors: Author 1..1

bookAtAuthors: Book 1..1

Table > Author

name: String 1..1

Table > OrderItem

quantity: Number, 1..1

item: Book 1..1

orderAtOrderItems: Order 1..1



118 7 Data Modeling

Table > Order

buyer: Customer 1..1

Table > Customer

email: String 1..1

fullName: String 1..1

password: String 1..1

The direct mapping delivers the conceptual advantage of the PD model
to the standard SQL DDL schema. One important part of this conceptual
advantage is that all combined multiplicities are subtypes (special cases) of the
0..* combined multiplicities. Given a statically valid SQL SELECT statement
s over the direct model of PD model p; given some role r with a multiplicity x
in p; then s is also valid in the direct model of each PD model p′ that results
from p by replacing x by a stronger multiplicity. The considerations here are
reminiscent of the Barbara-Liskov principle [196].

This is not true for the compact mapping, because as soon as a * up-
per multiplicity is narrowed to a 1 upper multiplicity, the compact mapping
changes.

In principle the direct mapping is sufficient for writing constraints with
SQL. It requires, however, many joins. The compact mapping avoids certain
joins because of the way it combines tables.

We offer a possibility of combining the convenience of the compact model
with the maintainability of the direct model which is inherited from the PD
model.

For this purpose we define the standard mapping and the standard rela-
tional model of a given PD model. The standard relational model is the union
of the direct model and the compact model. The standard mapping contains
redundant information. All tables from the direct model, which are also con-
tained in record tables, are called redundant tables. The important property
that allows this concept to remain executable is that all redundant tables in
the direct model can be seen as views on the compact mapping. This means,
they are in fact not stores, but computed from the direct mapping. Further-
more a crucial observation is that these views do not have to be updatable
because, as we will see later, the redundant tables are actually never updated.
Technically, the sibling rows can not be seen as view, but we assume that
they are kept consistent with a trigger mechanism. It should be mentioned
that there are other possible models which could be used like the compact
model in the following discussion.

Realizing Joins

Preferably, joins should be realized by using the table from the direct mapping.
A join is a Boolean expression. For example, if we take the relation type order-
ToOrderItem (theOrder, orderItems), then a possible select statement would
be SELECT Order, OrderItem FROM Order, OrderItem, orderToOrderItem
WHERE Order=theOrder and OrderItem=orderItems.



7.2 The Data Access Language DAL 119

Updates

In SQL updates we use the tables from the compact model. Of course in
the case of many-to-many relation types they are part of the direct model
as well. All update commands of SQL DML on the compact model can be
interpreted directly on the PD model, and are consistent with the combined
major multiplicities used for the definition of the compact model.

We have said for queries that narrower multiplicities are subtypes of wider
multiplicities. Of course, this principle extends to the query part of update
commands – the update commands in SQL DML have WHERE clauses as
well. It has to be pointed out that for the types affected by the update the
subtype relation is different. For inserts, a wider multiplicity, especially the *
multiplicity, is a subtype of a narrower multiplicity. For example, the insertion
of arbitrarily many links is only possible with appropriate multiplicities. The
different behavior of insert and queries has deeper reasons arising from the
phenomenon of contravariance.

However the limitability is a generalization of all upper multiplicities. If a
function adheres to limitability, then it is able to cope with the fact that at an
arbitrary current number of links the capacity is reached, and it has provisions
for this case. For deletes and updates we have the additional problem that
the interpretation is not obvious. Does a delete on an formerly 0..1 attribute
that is now a 0..* attribute mean ”delete one link” or ”delete all links”?

Definition of DAL

Each DAL operation lives in the context of one composite object. The compos-
ite object can be written with a CONTEXT clause. For the DAL operation,
the content subsystem of the context appears as the complete data model.
Here we use the fact that a composite indeed keeps a whole subsystem. This
inconspicuous rule is in fact the central enabling concept which allows us to
combine the modeling of one system with the modeling of a net of systems.
This is not an obvious thing if we use a relational language. Recall that the
union of two valid states over a data model again gives a valid state over a data
model. The problem is though that all classical relational queries change their
result because relational queries take the whole extension of a type. With our
CONTEXT clause we can limit the query to one system. All outgoing relation
types can be queried and set by the DAL operation.

Later, in the case of DAL operations in transactions, this context is given
implicitly. The whole transaction lives in the context of one single composite
object, a unit system.

Seamless Integration of Result Sets

We can use SQL INSERT statements for queries. Given an intended SELECT
query, one can easily define a table for holding the query results and use an



120 7 Data Modeling

insert instead. If we use such an insert clause for querying then we replace the
INSERT with an alternative keyword, namely REPORT, in order to state our
intention. Moreover, we restrict the REPORT statement to the row=value
syntax for the insert statement. This mechanism is not order sensitive and
fits much better into our paradigm. The REPORT statement is accompanied
by the possibility to mark a subsystem as volatile. Such a subsystem will
be deleted automatically at the end of a transaction. Reports that go into a
message type will be delivered after the end of the transaction, while reports
which go into a volatile entity type serve only as intermediate results. Our
REPORT and INSERT statements do not support the SQL ORDER BY
concept, since this does not fit to the fundamental data model, where entity
sets are not ordered.

The following example REPORT statement creates a new search result
for the bookshop. It delivers all books with the author ”Immanuel Kant”.
We suppose that the local variable result contains a new object of type
SearchResult.

REPORT

INTO FeaturedBook

searchResultAtFeaturedBooks = result

book = Book.bookId

title = Book.title

FROM Book, Author, authorsRel

WHERE Author.authorId = authorsRel.authors AND

Book.bookId = authorsRel.bookAtAuthors AND

Author.name = "Immanuel Kant"

Normalization

The result table of an SQL query can be de-normalized, i.e., the information
can be repeated in some rows. If we would like to normalize the result, we
have to distribute it over different record tables. In principle, it is semantically
easy to allow simultaneous insert into different tables: therefore we allow this
in both the INSERT and the REPORT clause. The one additional necessary
change is that we have to allow one GROUPBY statement for each such
insertion.

We prefer a different solution, which computes the denormalized result
first.

The key concept necessary for performing normalization is the GROUPBY
clause. For example, in order to receive treelike data structures for the repre-
sentation of an order, one may use a query for the OrderItem record table, and
then use the same query for the Order table, but with “GROUPBY orderId”
this time. If the treelike structure has even more levels the GROUPBY clause
must be used in a different form for the different records.



7.3 The Transaction Data Access Language TDAL 121

7.2.3 User Rollbacks: Nontransactional State

Parts of the PD model can be annotated as nontransactional. Then the state
of those parts is never rolled back, neither by roll backs nor by aborts. This is
used, for example, for modeling session states and represents the situation in
current application server technologies, where such a nontransactional state
is used.

7.3 The Transaction Data Access Language TDAL

TDAL (Transaction Data Access Language) is similar to an embedded lan-
guage like PL/SQL.

We give in the following the abstract syntax of TDAL. We have extended
the usually known concept of abstract syntax a little bit in order to make it
even more self explaining. In the abstract syntax, we denote identifiers by an
identifier type followed by a ˆ or &. This concept allows us to incorporate
some non-context free aspects about definitions into the grammar itself. The
ˆ stands for a place, where an identifier is defined. The & stands for a place,
where an identifier is used. The scope is the TDAL procedure. By using only
abstract syntax we want to point out that the syntax is not the focus; we will
elaborate this thought in Chapter 12.

procedure := RPROCEDURE procedurename^

context& entitytype&

LEVEL isolevel

program

isolevel ::= 0..3

program ::= program program

| report | insert | update | delete

| SAVEPOINT label^ program

| ROLLBACK label& | COMMIT label&

| IF boolexpression THEN program ELSE program

| empty

| WHILE boolexpression DO program

| FOR entitytype& ORDER BY role& DO program

In defining the transactional language we have been a little bit more reduc-
tionist than in the customization of SQL DML. We explain here the essentials
of our transactional language.

The entity type in the transaction nonterminal is the message type. The
context is the separated composite object which serves as the context for all
DAL operations in the transaction. The syntax of the DAL clauses is not
included; we have discussed DAL earlier as minimal modification of SQL. The



122 7 Data Modeling

discussed DAL clauses appear in the followin abstract syntax as nonterminals
report, insert, update, and delete.

All TDAL procedures are similar to database triggers ON INSERT, but
with so-called detached execution. This means that if one transaction has
performed a REPORT into a message type, then all procedures related to
this message type are called, each in a new transaction. The inserted entity
instance is called the superparameter. It is available within a procedure. One
can imagine every SQL clause in the procedure as being augmented by appro-
priate clauses that add this record to each element of the selection base. We
can have multiple procedures attached to each message type. This concept
is an improvement over dynamic binding. In TDAL the different procedures
attached to one message type are not necessarily mutually exclusive. The fun-
damental concept of a transactional language is the sequence of statements,
which allows the consecutive execution of TDAL statements. Local variables
can be defined by defining a volatile entity type, for example a whole record.
This can then be updated at will. Embedded Languages typically have iter-
ative loops, the FOR loops. Such loops are needed only in some cases, since
the relational queries themselves have an iterative structure and have the
conceptual advantage that they express concurrent execution of the request.
The FOR loop in contrast has the feature that each execution of the body
can transmit results to the next execution in local variables. The FOR loop
considers all instances of an entity type ordered according to the chosen role.
Concerning the WHILE loop one has to be aware that the system abort is
a firm part of the TDAL semantics. A WHILE loop will never run forever,
but will be aborted sooner or later. The Boolean expression syntax in the IF
statement is simply the syntax of the where clause. Messages are sent using
REPORT statements to write in the message types. These message types are
typically transactional, i.e., a message is sent only if a transaction is commit-
ted. Non-transactional messages can be used for exceptions to be transmitted
in the case of an abort. Therefore there is no separate exception concept. Note
that there can be an arbitrary number of transactions per message type.

7.3.1 User Rollbacks

Savepoints are used to create subtransactions (nested transactions). A save-
point clause is a block named with a label and has the form SAVEPOINT label
program. The block in the savepoint clause is the subtransaction body. The
COMMIT acts as an exit to the specified subtransaction which conserves the
changes. A user rollback is performed by the operation ROLLBACK. This
operation performs an undo on all changes since entering a certain savepoint
block in the program. The rollback can specify an arbitrary enclosing save-
point. The DAL language takes a block-oriented approach here in order to
ensure statically the correct usage of rollbacks. Outside the block the label
cannot be used for rollback. The programmer therefore has to take care not



7.3 The Transaction Data Access Language TDAL 123

to leave the savepoint block as long as he or she intends to roll back this part
of the transaction.

7.3.2 System Aborts and Guaranteed Execution by Queuing

This section is an excursion concerning the implementation of the access lan-
guage. Transactional applications are implemented on transactional systems.
The transactionality is enforced by the transaction monitor. Databases can be
used as stand-alone transactional systems. Multi-tier platforms use a separate
transaction monitor as coordination instance for the transactions. Note that
earlier in the development of transactional platforms, whole multi-tier systems
were called a transaction monitor, since they formed monolithic products. As
indicated, we now call this term transactional system. Today, the term trans-
action monitor usually refers only to the transaction service within such a
transactional system.

Transaction processing systems enforce the ACID properties of transac-
tions. This is molded into the ACID concept of transactions. The letters of
the acronym mean:

• (A)tomicity. A transaction is either executed completely or it is not
executed (rolled back).

• (C)onsistency. A transaction leaves the declarative integrity constraints
intact.

• (I)solation. A transaction is executed virtually seriallly. It appears as a
protected region.

• (D)urability. The completion of a transaction, as one of the possible
outcomes of the atomicity, means that the transaction is performed on
persistent data, or in other words, the changes are persistent.

The definition of atomicity already relates to the concept of a system abort
of a transaction. In order to achieve the virtual serial view the transaction
processing system uses an optimistic strategy. In some cases the optimistic
assumption fails. For these situations it is necessary to roll back transac-
tions. These cases are system aborts. The applications which participate in
the transaction have to be able to cope with this case.

In typical transactional systems today, the necessity to deal with system
aborts has been alleviated by the system architecture. In these architectures
there are inbuilt repetition structures, which repeat the transactional code
until the transaction has performed without system abort. The execution of
transactions in these loops can only fail for other reasons, such as the trans-
action is too resource-consuming. We call this transparent ACID, or simply
TACID. The difference between ACID and TACID transactions is: in the case
of a failing TACID transaction, a repetition makes no sense; in the case of the
ACID transaction it does.

Hence in the specification there is no need to specify the repetition of a
transaction in case of failure.



124 7 Data Modeling

The virtual system model for TDAL can be described as a serially exe-
cuting system with a waiting bag at the front. A waiting bag is needed in
contrast to a FIFO waiting queue, since the order of queries may be changed
especially when transaction aborts occur. The right order could be guaranteed
with respect to each client’s requests only. This virtual machine behaviour can
be achieved by transactional platforms.

We have explained how TDAL is primarily used to specify transactions,
i.e., operations, which are atomic as a whole. It can, however, be used for
specifying non-transactional operations as well.

Purpose of Transactions for the Business Logic

The transaction service in a system has primarily the task of providing the ba-
sic machine model on which multi-user business logic on shared data becomes
possible. The transactions provide the consistent foundation on which to build
more complex business logic. Transactions are the business logic equivalent to
atomic operations in operation systems design. Business logic features which
resemble mutual exclusion are not expressed by transactions. For example, if
a customer consultant wishes to lock a certain set of data in order to perform
some changes, these changes are not realized as a single transaction. Instead
the act of reserving the data, the so-called check–out and the corresponding
check–in are programmed as transactions. One has to say that this type of
reservation is rare in large systems since it often turns out to be too inflexible.

7.3.3 Decomposition

TDAL procedures can be used for functional decomposition. We make use of
the savepoints for this purpose. Procedure names are valid labels for save-
points. Using the name of a procedure as a label for a savepoint means that
this procedure is executed attached at the time of the commit of this sub-
transaction. The subprocedures can leave their results in local variables of the
caller.

7.3.4 Application of the Data Access Language to Form-Oriented
Modeling

DAL can be used as a dialogue specification language in form-oriented mod-
eling. TDAL can be used to write server actions. A TDAL procedure which
specifies a server action receives the message from the user message model,
but with an additional attribute, the user identity. The user message model
is a submodel of the message model used in TDAL. This is an application of
the model decomposition mechanism. The TDAL procedure must send under
any condition exactly one message with the same user identity and contain-
ing a new client page. If one wants to ensure statically that the constraints



7.4 Constraints 125

annotation match with the implementation of the server action, then one can
use a TDAL template which guarantees that. The body could look as follows.
The templates <dosomething> can have side effect. This TDAL template can
statically ensure, also thanks to the TACID principle, that always exactly one
client page is sent – see Sect.7.4.3.

<dosomething>

IF flowcondition1

THEN <dosomething1> <send client page content1>

<here server output constraint1 must hold>

ELSE IF flowcondition2

THEN <dosomething2> <send client page content2>

<here server output constraint2 must hold>

ELSE <dosomething3>

<here server output constraint of the default transition must hold >

7.4 Constraints

Constraints are based on Boolean expressions in the PD model, which are
used in certain constraint contexts. If they are denoted formally, we will use
Boolean DAL expressions. A constraint has a constraint expression and a
context, where it is located.

There are three contexts which are in principle global to the model, and
one context class. The global contexts are the transactional invariant context
and the structural invariant context, and the deployment context.

Static constraints are Boolean expressions which refer only to the current
state of the PD model.

A transactional invariant is a Boolean expression on the PD model that
must hold after each transaction. A structural invariant is a Boolean expres-
sion in the PD model that must hold after each basic DAL operation, i.e.,
even within transactions. They are called structural because the intuition is
that they refer to structure in the PD model, which goes beyond the PD
model semantics. A typical example is given by structural 1..1 multiplicities
for attributes. They express the conception that the attribute must always be
there.

A constraint can be given between every two TDAL operations. If a con-
straint is given at such a place we call it a checkpoint. The pre- and postcon-
ditions often found in modeling languages represent simply the checkpoints
at the beginning and the end of a transaction.

7.4.1 Generic Static Constraints

Generic static constraints are frequently occurring types of constraints. The
catalogue of generic constraints is like a library; they are not part of the



126 7 Data Modeling

language definition. The use of generic constraints is just the use of prede-
fined Boolean expressions. Theoretically they are understood as parametric
polymorphic expressions, since they use type variables. The following static
constraint definitions apply specifically for binary relation types unless stated
otherwise.

Multiplicity

A multiplicity is a constraint that refers to a role. Let a be a relation type
connecting T and S. Then the multiplicities at role(a, T ) restrict for each
element of S the number of partners from T along a. These multiplicities are
called multiplicities of T from S (along a). There are two types of multiplicity
constraints, lower multiplicity and upper multiplicity. The lower multiplicity
gives the minimum number of partners; the upper multiplicity bound gives the
upper bound. The upper multiplicity can be simply the true condition, namely
the trivial upper multiplicity, also called many or denoted by an asterisk. A
lower multiplicity on role(a, t) has a lower multiplicity number. A non-trivial
upper multiplicity has an upper multiplicity number. The major multiplicities
are the upper multiplicities *, ≥ 1 and the lower multiplicities = 0, ≤ 1. The
combination of a lower and an upper multiplicity on a role is written two
dotted points, where many is represented by an asterisk, e.g., 0..1, 2..4, 1..*.
We call such a combination a combined multiplicity.

Note that multiplicities in our method are constraints, not principally
distinguished from other constraint types. This is a major difference to other
modeling methods like ER and UML. Each association end can therefore have
multiple associated multiplicities.

7.4.2 Limitability

An upper limitability on a role is similar to a non-major upper multiplicity.
It requires that inserts must be able to deal with the case that the limit has
been reached. The limit is not constant however. An upper limitability has
special favorable properties with respect to maintainability. Formally speaking
all upper multiplicities are special cases of the upper limitability for inserts
as well as for queries. The concept of limitabilities is a critique on non-major
multiplicities because it discourages for example expressing ”a soccer team has
11 players” as an upper multiplicity. Take for example ”A certificate requires
2 audits”. What if these rules are changed and 3 audits are needed? If the
old rule was given as a non-major upper multiplicity, then some parts of
the business logic may rely on the exact number 2. Suppose the rule for
granting the certificate was written as ”if the first audit is sufficient and the
second audit is sufficient, then grant certificate.” Obviously, the new third
audit is not tested after the change. A non-major upper multiplicity should
be used only if the consistency of the business logic necessarily depends on
the multiplicity. The same holds for lower multiplicities as well. An upper



7.4 Constraints 127

limitability states that the programs must be able to cope with every capacity
limit. The upper limitability applies information hiding; the threshold of the
upper multiplicity is hidden. Logically there exists a corresponding concept
for the lower multiplicity, the lower limitability; it states that the business
logic must be able to cope with the case that a certain number of entries is
required. The business logic is not able to query the value, it only receives
an exception. Again, a business logic respecting a limitability is more general
than a business logic which depends on querying the current threshold.

Attributes

A frequent question arising from the fact that the PD model is based solely
on relation types, is the question about attributes. Indeed an attribute of
entity type e is just another entity type f connected via any relation type.
The multiplicity at the primitive type is arbitrary. A unique attribute is an
attribute with a 0..1 multiplicity at the entity type. The term unique is of
course not used for primitive data. A single attribute is an attribute with upper
multiplicity 1 at the attribute. An optional attribute has lower multiplicity 0.
A required attribute has lower multiplicity 1.

Relationships

Relationship constraints are more a pattern. They can be seen as materializa-
tions and then generalizations of relation types, see Fig. 7.3. A relationship
constraint has one entity type R, the relationship entity type, and several
with R connected entity types, which are called correlated entity types. The
defining condition of a relationship is that all correlated entity types have
multiplicity 1..1 from R. The relationship can be seen as an entity type which
models the links of a relation type as an entity type. Accordingly, each tuple
of a partner across the correlated relation types can have more than one re-
lationship instance, which connects them. If only a part of the entity types
connected to the relationship is correlated, then other connected entities can
be seen as attributes of the relationship. A classical example is the relation-
ship between employee and employer. Every employee can in multiple cases be
employed by an employer, with different time spans. The advantage of the PD
modeling method is that the semantics of relationships is fixed, but versatile.
A true constraint on relationships is the relationship uniqueness. It relates to
the relationship partners, and states that each tuple of relationship partner
instances must have a unique relationship instance as a connection.

Because of relationships there is no need for something like an associative
class. The semantics of the associative class in UML are not uniquely defined
[271]. Given a relation between employer and employee with contract as as-
sociative class; it is not clear whether there can be only one contract between
each employer and employee or several contracts. If there can be more than
one, then it is not clear whether they can have identical attributes.



128 7 Data Modeling

Customer
Offer

Salesperson

Customer
Offer

Salesperson

Contactcontact

Fig. 7.3. A relation of arity 3 and an alternative model with a relationship

Moreover it is not specified how an associative class behaves under deletion
of the link. The straightforward semantics would be that the class is deleted as
well. Curiously, the associative class is then in a kind of composition relation
to two (or more) instances, since the deletion of either instance leads to the
deletion of the link and hence to the cascading delete of the associative class
instance. Similarly it is not clear, whether an associative class instance can
be transferred from one link to another.

This is a telling example of the kind of serious troubles one can encounter
if one introduces prematurely a modeling element solely following an appeal
to intuition.

Higher Multiplicity

Higher multiplicities are a generalization of multiplicities to relation types
of higher arity as well as for relationships. They are structurally identical
as simple multiplicities. Their semantics are, however, that they specify the
number of partners, if all other partners in the higher multiplicity remain
fixed.

Subset

A subset constraint between a subset relation type and a superset relation
type states that the subset relation type is a subset of the superset relation
type.

Nand

A nand constraint is a constraint between a set of relation types starting at
a central entity type t. It states that an entity instance of t has at most one
link to one of the relation types.



7.4 Constraints 129

Xor

An xor constraint is a nand constraint where an entity instance of the central
entity type must have one link to one of the relation types.

If

An If constraint is a constraint that connects a relation type and a Boolean
attribute of an entity type. It states that the Boolean expression is true if the
relation type has a link. There is no need for a separate if/else constraint,
since this can be realized by using an if constraint and an xor constraint.

Partial Order

A partial order is a constraint on a group of directions on relation types. It
states that all links of the involved directions of relation types must form a
directed acyclic graph. If each link is seen as an edge in the direction which
participates on the partial order, then these links must form a directed acyclic
graph. The partial order diagram is the directed graph formed by entity types
and the directions participating in the partial order in the class diagram it-
self. It is important to notice that the partial order diagram can have cycles,
because the partial order constraint demands a cycle-free state, not a cycle-
free PD model, as shown in Fig. 7.4. Furthermore, a partial order constraint
only introduces a non-trivial constraint if the partial order diagram has cy-
cles. For a partial order every cycle in the partial order diagram must contain
one relation type a, for which the multiplicity at the entity type targeted in
the participating direction of a has a lower multiplicity 0. Every such relation
type part of a cycle c is called a forward ring terminal of c. A partial order
p has an inverse order inverse(p). For a cycle c The forward ring terminal of
inverse(c) is called the backward ring terminal of c.

To

Fro

Data model

fro2toto2fro

Data state

Partial 
order

Fig. 7.4. A partial order in the data model and a valid state of this model

Entity types as well as relation types can participate in different partial
orders.



130 7 Data Modeling

An example of a partial order is the tree of categories in the online book-
shop. The main tree is modeled by the entity type category together with the
self-relation type parent. This constitutes the smallest possible cyclic partial
order. Accordingly, both directions of parent have lower multiplicity 0. Since
the upper multiplicity of the forward direction of parent is 1, this partial
order characterizes a tree. Note that these constraints alone do not mean that
there is only one category tree in the system. In order to enforce this, we need
another constraint, which states that there is only one entity instance, which
has no parent.

There is another self-relation type of category, namely the relation type
category link. This relation type models whether a category is listed within
another category, which is not its parent. Such listings are called links, and
they are used to make browsing the catalogue more convenient. If we were to
put no constraint on category link it would be possible to mention a category
in every other category. But we prefer to give the relation type other more
restricted semantics, i.e., it is intended that the relation type may be used
only to mention a category in another one, which could serve as an alternative
parent. We can capture this intuition by including it in the partial order of the
parent relation type. As a result, the graph of parent relations and links must
form a directed acyclic graph. This example hints at an important property of
partial orders: every subset of the participating relation types forms a partial
order in itself.

Entity types can participate in different partial orders, and these partial
orders do not have to be compatible.

The defining property of a treelike partial order is that for each entity type
in the partial order all outgoing directions within the partial order have a
nand constraint.

Functional Dependent Orders

Functional dependent orders are a ubiquitous and important type of con-
straints. They correspond to functional dependencies in the relational model,
but are absent from many modeling languages. They are based on the more
general dependent orders. The defining property of dependent orders is: if two
entity instances are connected by a path p within the dependent order, then
they are connected along every relation type path isoterminal with p within
the dependent order.

A concatenation is a special case of a dependent order, where the par-
tial order graph consists only of a direction path and a direction which are
isoterminal. Concatenations of two associations are perhaps most frequent.

A functional dependent order is a dependent order where all targets of
relation types in forward direction have multiplicity 1..1. Hence a functional
dependent order is cycle-free since it has no ring terminals.

The partial order diagram of functional dependent orders is a commutative
diagram, and we call it the commutativity diagram.



7.4 Constraints 131

A dependent order is maximal in PD model d, if there is no dependent
order in d, of which it is a subset. This is a property of a dependent order
with respect to a data model, since of course the maximality may hold in a
submodel, but may be lost in a greater model.

Composition Constraint

A composition constraint is a constraint on a single composite entity type and
a subsystem, the contents subsystem. Every entity in the contents subsystem
must have a master relation type to the composite entity type. A common case
is that this relation type has a 1..1 combined multiplicity at the composite
entity. This expresses that every weak entity type instance belongs to only one
composite entity type instance. This is one valid possibility of a general con-
dition concerning master relations, which we will explain later. The defining
property of the composition constraint is that for every link in a relation type
in the contents subsystem, both partners must belong to the same composite
entity instance. A composition therefore assigns whole substates to a single
entity instance. We call this instance the composite entity and the substate
with this entity the composite object. An entity type in a contents subsystem
is called a weak entity type. The contents subsystem as a PD subsystem is
part of the definition of the constraint, as shown in Fig. 7.5. Like every other
subsystem, a contents subsystem can have detouring relation types. Note that
the defining property for the composition constraint does not apply for these
relation types. These detouring relation types can therefore have links between
different composite objects.

One entity type can have multiple master relations. Consider the case
where one entity type A is again part of another entity type B. Then the
weak entity types of A are also weak entity types of B. Furthermore, consider
types representing data records that appear in different compositions. Then
one such record type has several master relations of other composite types.
The composite constraint then only requires that every instance of this data
type belongs to only one of these composition constraints. Accordingly, a
composite entity type can have a master relation to itself. This is a typical
situation in treelike data structures.

The general condition concerning all the master relations of one weak
entity type is now the following. All master relations must form a single partial
order.

The composition constraint offers an interesting advantage for of the PD
model, namely that the PD model does not need a reflection step in order to
capture states of PD models as substates. A composite entity type instance
has a complete associated data model, and therefore each entity instance of
the composite type has a complete state associated with itself. In this way
dumps of a state can be easily modeled.

Each weak entity type has one immediate master relation type. The im-
mediate master relation types form a treelike partial order. Note that such an



132 7 Data Modeling

Invoice 

composite
entity

master
relation types

detouring
relation type

contents
subsystem

external
reference

weak
entity type

Fig. 7.5. A composition constraint with composite entity and contents model

order does not have to be tree-shaped in the data model. All master relations
form the transitive closure of the order of immediate master relation types.
In a typewise composition each entity type must have only one immediate
master entity type. That means that the immediate master relation types
form a treelike partial order, which is even treelike in the data model. A firm
composition is a composition, where the master relation must not change dur-
ing the lifetime of the weak object instances. The weak object instances can
not change the composite where they belong. A separated composition has no
detouring relation types.

An entity is deleted from a composition by deleting its immediate master
relation link. This operation is the basic notion of deletion of entity instances
in our method, as we have hinted at earlier. This operation forces all links
along contained relation types to be deleted because this is demanded by the
composition constraint.

Multivalued Dependencies

Multivalued dependencies are directly analogous to the notion in relational
database theory. A multivalued dependency is a relationship. A multivalued
dependency is a constraint concerning one entity type called the join entity
type and two other entity types called multidependent entity types. The join
entity type can be understood as representing a join. The constraint demands
that the multiplicity of the multidependent entity types is 1..1. The join entity
type can then be understood as being a single relationship, where in fact two
relationships should be used.

Absolute Number and Singleton

If we want to define the absolute number of instances of an entity type t in the
system, then we use a relation type of this entity type to the system entity
type, the so-called master relation type (see Sect. 7.4.2). The multiplicity of t



7.4 Constraints 133

on this relation type bounds the number of instances. A common usage is of
course the multiplicity 1..1; then the entity type is called a singleton type.

Isomorphism

The identities in the data model can be said to serve only as anchor for the
links between identities. An exchange of an identity in the whole state leaves
the semantics the same. This is equivalent to the concept of understanding
the identities as opaque. Moreover, this consideration motivates the concept
of isomorphism. This notion is what is called in mathematics an equivalence
relation, which means it is a weaker notion of equality. Therefore there can be
several definitions, differing in cases which are still considered as structurally
similar. We single out here one especially important concept, which is rarely
defined precisely in modeling methods, namely the concept of cloning. A clone
constraint is a constraint on a 1..1 to 0..* relation type between two entity
types the clone type and the cloned type (which are often the same type).
For both a group of associations should be defined, the so-called clone parts,
similar to compositions. Indeed a typical case will be that one of the types
is a message and therefore a composition. The constraint holds, if all linked
entity instances of the composite entity types have the same number of clone
parts. Note that in our modeling approach this means for hierarchical data
structures like trees that both trees must be a deep copy of each other.

Inheritance

The PD model does not use inheritance, also known as generalization. Inheri-
tance for the sake of expressing alternate information content is expressed by
the nand constraint. Inheritance may seem a superficially intuitive approach
to modeling specialization of classes. A look at examples shows that a solution
with inheritance is not flexible enough. Consider a class BusinessPartner with
subclasses Customer and Supplier. Some business partners may be sometimes
customers and sometimes suppliers. Inheritance would require now a case-by-
case formation of multiple inheritance relations. In the data model proposed
here one sees that one has simply to drop the nand constraint. The nand
constraint should only be demanded if it is really required.

In many cases, the nature of the inheritance relation may even be a compo-
sition relation. The specialization entity types like customer and supplier are
composites to business partner. This by the way contains another hint that
metaphorical arguments are often outright misleading. The object-oriented
metaphor appeals to intuition: wouldn’t it be so intuitive to say that a cer-
tain business partner is a supplier? This kind of argument discourages a look
for other equally plausible alternatives. In the case here, for example, an at
least equally plausible viewpoint is to see the specializations as similar to at-
tributes in our language. The Supplier is then a supplying business partner.
And, lo and behold, there is from the outset no problem in having a supplying



134 7 Data Modeling

and buying business partner. Moreover this enables us to discuss the prob-
lem of really contradicting attributes, which can come up of course, like say
fixed and mobile (which simply means we want to use the nand constraint),
in greater clarity than if it is mixed up with problems introduced by a wrong
metaphor. In that sense one could call our approach an attribute-oriented ap-
proach in contrast to an object-oriented approach. There is no problem at all
in the fact that the attribute-oriented approach is moreover form-oriented.

Network Messages

A network message is a composite entity type that is a weak entity type of
several unit systems. Each message entity is either a received message or a
sent message. A sent message has a remote association to a recipient, which
has another unit system u (belongs to another unit system). A sent message
has always a clone, which is a received message and a part of u. A received
message has an external relation type, each instance has a link to the sender,
which has a reference to the sending unit system. We model messages in such
a way that both external relations, sender and receiver, are also cloned. In the
sent instance as well as the received instance, one of the unit systems asso-
ciated via these external associations is also the composite entity. A received
message can be either executed or pending. For the unit systems represent-
ing terminal nodes of the network, all messages received by these nodes can
be seen as being immediately executed. (But not the messages sent by these
systems.) The sent and the received clone of one message are connected by
a so-called transport relation type, which is directed from the sent to the re-
ceived instance. The execution of a message at a unit system through a TDAL
command creates a list of sent messages. These sent messages are connected to
the received message by so-called production associations; these associations
are directed from the executed received message to the generated messages.
Only an executed received message can have outgoing production associa-
tions. Each message type can have several production associations, and each
production association can have multiple links outgoing from a single instance
of an executed association.

All transport and production associations in the model form a partial
order, expressing the flow of messages. The nondeterminism of the message
model is expressed in our view how the message model evolves through time.
In a certain state, some received messages are pending, some are executed.
One message sent from a terminal node is called an inbound message. Each
such message can trigger a set of messages, crossing the model. These messages
are called the cascade caused by the incoming message. A system in which
the cascade can be infinite must be considered erroneous, because it would
basically lead to an uncontrolled and meaningless system load. A cascade
should be finite. An infinite cascade is an unsuitable method to realize active
behavior. Active behavior is the case that a system part creates a message at a
certain time without a user request. We model active behavior by a dedicated



7.4 Constraints 135

network node, which is modeled as a terminal node. This terminal node can
receive time requests which are messages consisting solely of a time and an
identifier. The terminal node then will sent a message with only the identifier
back at the requested time.

Of course there are interesting aspects that involve the inclusion of this
timing behavior into the model, but for the kernel network model this aspect
is an external aspect, which is realized on top of the basic messaging model.

Sender and recipient modeling for messages is done in the definition above
in an abstract fashion: the sender and recipient have been characterized in a
way that is at a closer look an abstract data type definition: the sender and
the recipient are only said to have a unit system, not to be the unit system.
Hence each sender and recipient is supposed to have a function senderUnit
(recipientUnit), which gives the appropriate unit system. In fact at least on
the recipient side it is more natural to connect the message with transactions,
as we will do now. If we put these considerations in other words, we can say
a unit system can be said to model freely its sender and recipient structure.

7.4.3 Generic Temporal Constraints

Temporal constraints are Boolean expressions which compare different states
of the PD model with each other.

In this section we will introduce generic constraints, which are in fact
temporal constraints. Even such simple properties like being immutable are
in fact a temporal constraint – a point which is often overlooked. We will
introduce the generic temporal constraints in this section informally.

We have introduced checkpoints as the places between two DAL opera-
tions, including the beginning and the end of a transaction.

Timestamp

A timestamped relation type is a relation type with a role timestamp of primi-
tive type timestamp. The defining property is that a new relation link always
carries the current time as timestamp. A log relation type is a permanent
timestamp relation type.

Full Immutability

Full immutability is the concept that a part of the model has a state from
the start of the model, and this state is constant. A full immutability con-
straint follows from a certain combination of other constraints, e.g., from two
permanent associations that are combined by an xor constraint. A primitive
operation in the DAL INSERT and REPORT statements is the NOW() func-
tion, which returns the current timestamp. It returns the same timestamp for
all applications in the current operation. The timestamp is provided by the
clock of the transaction context.



136 7 Data Modeling

Immutability Constraints

The notion of immutability comes in two quite distinct flavors. These are
expressed in the two types of immutability constraints discussed here, namely
permanence and immutable composition. Permanence is in some sense the
simpler constraint, since it expresses a notion of immutability as a property
of a single link. A relation type is permanent, if each link is never removed once
it is inserted. The other immutability constraint, the immutable composition,
expresses the concept of a to a composition content model. The content model
of one composite identity must not change as long as the write lock is in place.
There are many possible implementations of this constraint.

A permanence is a constraint on a relation type, which states that no
deletion of links of this relation type is possible.

In an immutable composition the content must not change during the life-
time of the composite object. The creation therefore has to be completed in
a single transaction.

Notes versus Immutable Composition

The immutable composition is used to express a immutable content associated
with a model part. There is an important modeling alternative to immutable
composition, namely the notes concept. The composition constraint requires
the composite object to be single-hosted by a composite entity. One purpose
of this is to allow the composite object to have sole control over the updates.
Since these updates are not possible with immutable composition, the com-
position is not used for this purpose in this case.

The immutability of the immutable composition enables an alternative
modeling approach, where one such object can be part to many entities, which
are then of course not composite entities any more. Such a shared immutable
object is called a note. A model with a immutable composition is transformed
into a model with a note by introducing a separate note entity type. The
note content is a composite object of the note, while the old composite enti-
ties have only an association to the note. There is a computable bidirectional
translation between a model with immutable composition and a model with
notes. This translation we call the note/strong-composition alternative. In the
form-oriented user interaction model we use for example strong immutabil-
ity. Strong immutability has the advantage of having more identities, which
represent the different places of usage of the note. This is indeed in some
cases necessary. This possibility is of crucial importance at one place within
the form-oriented user interface modeling, namely for the modeling of single
selection. This is expressed by a constraint which requires that only one ob-
ject from a list within a message can be included in the user request. This
constraint is expressed as a 1..1 multiplicity. But if the same message object
could be used several times, then this constraint would not be correct. The
identity of the message encodes not only the content but also the position



7.4 Constraints 137

within the object net. A more complicated constraint would be needed for
a note-based model. On the other hand, the note-based model may in other
cases express exactly the desired thing. For example, if one has different doc-
uments, and one wants to compare them. The note concept is more flexible
than, e.g., requiring outright a set semantics on an entity type, i.e., that each
instance of the entity type is structurally different.

A generalizing concept, which is motivated by the note/strong-composition
alternative is the concept of the noteanchor constraint. If we want to use both
approaches in one model, we can connect both submodels with the noteanchor
constraint and express in this way that the targeted model parts must be in
the note/strong-composition relation. The name noteanchor is derived from
the fact that the note is connected with the anchor, where a clone of this note
is hooked into the data model. The noteanchor concept is an instance of the
concept of a view, which we have taken from the important database concept.
This application of the view concept has however an important very special
focus. It serves as a way to give path-dependent usages of data, giving the
notes an identity.

Deeds

We can apply the note/strong-composition alternative to the messaging par-
adigm. Messages are sent by cloning. We can avoid the cloning of messages,
and try to view messages as data truly shared between different unit systems.
Messages are immutable compositions. The notes in the alternative model are
called deeds. All deeds form the deed model. We call this alternative approach
deed-based in contrast to the message-based approach presented so far. The
use of deeds requires the replacement of the notion of unit system given above
with a different notion; we call it the house system. The house system has
access to deeds in transactions. The house systems share state, namely the
deed model.

The basic idea of viewing data as being shared between different unit
systems is clearly an instance of the so-called concept of distribution trans-
parency. The deed-based approach uses the concept of distribution trans-
parency only in a very special case, namely for immutable data. Usually
distributed programming with distribution transparency or remote writing
has a number of peculiar consistency problems. In the special case of using
deeds they do not occur because of the immutability of deeds. This is of course
desired.

Unit Systems

A unit system is a firm composition. The defining property is that all TDAL
procedures accessing the unit system state are either in the context of the
unit system or in a context within the unit system content model. This means
no transaction spans across the unit system content model boundary. It is,



138 7 Data Modeling

for example, impossible to create a join in a query that spans across the unit
system specification boundary. The communication across the boundary is
exclusively message based. As a consequence of this, different unit system
instances have states protected against each other and the outside. This will
be used in the component notions presented in Chap. 8.

The effect of the unit system specification is therefore not to enforce the
transactionality within the unit system; since the transactions within the unit
system are always free to send messages to other transactions within the same
unit system, they can always create multistep, non-transactional functionali-
ties. The purpose of the unit system is rather to separate its instances from
each other and from the outside. It is the creation of a membrane. The unit
system specification fits to our decomposition mechanism. The notion of unit
systems fits to our main considerations about good composition mechanisms,
because in a given modeled system we can remove all unit system specifica-
tions and the system functionality remains the same. It has effects only with
respect to future changes of the model. Hence the unit system specification
can be translated into a style format. The unit system is however not a de-
composition, but an assertion about properties of its parts. A unit system
specification can clash with a transaction specification. The counterpart to a
unit system is a transactional system. A transactional system is a firm compo-
sition where the state can be fully accessed by transactions. The combination
of both notions is a transactional unit system.

There are two natural purposes for defining a unit system. These pur-
poses are encapsulation and distributed design. Their relationship takes up
the discussion on the net as an analysis-level concept. The encapsulation as-
pect represents the analysis view on the net, and this is our primary interest
here. When we first mentioned unit systems, we emphasized that each unit
system is a black box, i.e., a single unit of abstraction, conceivable as a single
abstract data object.

There is a crucial difference to the encapsulation concept of many object-
oriented languages, like Java. In Java, the classes are the encapsulation bound-
ary. The operations of a class can access the private state of all instances of
the class. This is counterintuitive, since it violates the initial intuition in ob-
ject orientation. The unit of encapsulation should be the instance. Vice versa
this is another hint why metaphorical approaches like object-orientation easily
run into difficulties. In contrast, in the notion of unit systems the boundary
protects the instances from each other.

Let’s consider an entity type representing accounts. If an account would be
a unit system type, then a transfer would be modeled by a message flow, which
is dealt with appropriately within the different account instances. If however
we want the composite objects to collaborate in joint DAL expressions, then
we use a unit system which contains all accounts. Then a transfer could be
performed in a single DAL query. This situation would then resemble the
situation in many object oriented languages. The question which solution is
better depends on the application.



7.4 Constraints 139

The relation types within one unit system are called local relation types.
The external relation types are called remote relation types. Entity types can
be part of different unit systems. Important is the case where a composite
entity, e.g., a message, is a weak entity type of several unit systems, and has
in these unit systems the same contents subsystem. Due to the definition of
the master relation, the instances of these entity types must belong to different
unit systems. In each unit system, the type can have different relation types.
One subset of the unit system set is the terminal set which contains terminal
nodes. These unit systems have no data model besides the model for the
network messages. They represent the boundary of the network model of the
data model.

A TDAL procedure of a unit system can be only executed if the superpa-
rameter is part of the unit system. Our message based network model assumes
that the network infrastructure copies each message from the producing unit
system to the receiving unit system. Later we will discuss an alternative model
for messaging based on so-called deeds, which will work without the copying
process.

Asynchrony and Distributed Systems

Our data manipulation model has a layer above the transaction layer described
by TDAL. We call it asynchrony. Asynchrony is a model of programming
operations, which as a whole do not require transaction isolation. The layer
of our execution model, which enables the modeling of distributed systems, is
the asynchrony layer. It is not primarily dealing with distribution, but with
asynchronous execution.

As a matter of fact, the simulation of a distributed system on a transac-
tional system is immediately possible. From the viewpoint of the transactional
system the messages of the distributed system are messages from itself to it-
self. Note that the transactional system uses the messaging service, but only
for these messages from itself to itself. These messages are put into the waiting
bag. If a transactional system executes a distributed system, then all TDAL
transactions of the unit systems in the model become transactions of the sin-
gle transactional system. The distribution style format then implies that there
is no isolation between such cascades of transactions. Note that this simula-
tion of a distributed system on a transactional system uses the messaging
service, but only for those messages from the transactional system to itself.
These messages are put into the waiting bag, and the waiting bag delivers the
desired non-deterministic behaviour.

Each received message must refer to a transaction on the unit system. The
transaction identity must be part of the message. A message can be pending for
some time, and will then be executed. The TACID principle, explained in Sect.
7.3.2, defines a policy which makes technical issues concerning transaction
processing as transparent as possible.



140 7 Data Modeling

On a message the corresponding TDAL operation is executed. The seman-
tics of the TDAL operations is given in a separate chapter.

Remote Subscriber

The remote subscriber constraint is the way to realize remote publish/sub-
scribe event notification. It is important to mention at this point that the
observer pattern as a local implementation pattern is not necessary in our
modeling approach, since it is on a lower abstraction level. It is rather an im-
plementation of the virtual machine. Between different unit systems, however,
this concept is necessary. The subscriber concept is about allowing an entity
instance to keep track of changes without actively observing. So calling this
an observer by saying it appears as if it would observe is purely a matter of
taste. A remote subscriber constraint is a constraint which refers to

• an association between the so-called remote subscriber entity type and the
remote publisher entity type, where the association is an opaque reference
to the subscriber hold by the publisher;

• the so-called notification entity type, which must be a message;
• a query on the publisher’s unit system, which takes an entity of the pub-

lisher’s type as a superparameter.

Subscriber entity instances associate themselves to publisher entity types. A
message of the notification entity type must be sent to each subscriber by
each transaction, during which the query changes its result for a publisher as
a superparameter.

Reduced Consistency

The virtual serial view of the execution of operations is a costly paradigm. In
a system there are often transactions which are not dependent on a perfectly
accurate isolation from different transactions. Therefore the implementation
platforms offer the possibility to execute business functionality on lower iso-
lation levels. In order to offer such a feature in a still precise specification
paradigm, we must be able to specify lower isolation levels, so that the imple-
mentation can make use of these relaxations. The definition of the isolation
levels is not the focus of this book. It suffices to know that the shortest way
to represent the modeler’s intention is clearly to assign an isolation level to
the appropriate functionality. According to our source code principle, each
isolation level is identified by a single identity.

We do not want to introduce formal semantics of isolation levels here.
However, we can derive the overall structure of the isolation-level semantics.
The main principle which has to be taken into account is the following. A
relaxed isolation level cannot be specified as a constraint on a model which has
semantically a higher isolation level, if this constraint is not used. Therefore an
isolation level l can only be specified if there are basic semantics of the model,



7.5 Style Formats 141

which implies a lower isolation level than l. Note that the isolation levels
adhere only to a partial order. Hence we see that every functionality must
receive an explicit isolation level, and a relaxed isolation level is expressed
as the fact that the functionality under consideration does not receive the
highest isolation level.

7.5 Style Formats

A style format is a constraint on the syntax model, not on the data model.
Style formats are also annotated on the data model. The style format’s con-
straints on the syntax model demand that wherever this style format is an-
notated a certain condition x holds on the syntax model. The annotation of
a style format to an instance within the syntax model is a link of one re-
lation within the syntax model, the annotation relation. The style format’s
constraints on the syntax model have usually the form: “for each link of the
annotation association, x must hold on the annotated part of the model.” The
semantics of a style format is much different to a data model constraint. The
data model constraint would not be evaluated statically. Complex data model
constraints need for their definition a style format as well for the following
purpose. A data model constraint may target different data model parts in
different roles, e.g., the composition constraint as exactly one composite entity
type and arbitrarily many weak entity types. The typedness problem here, i.e.,
the question of whether the application of the data model constraint matches
statically with the constraint description, corresponds to a style format.

Later we will give DAL queries semantics by interpreting them as parts
of the model, thus eliminating to a considerable extent the need to have a
separate formal basis for the model and the manipulation language. In this
interpretation DAL queries and TDAL programs will be parts of the model,
which fulfill a style format. The virtual machine that executes our high-level
program searches for applications of these special style formats, i.e., the DAL
and TDAL queries, and can then interpret them directly. As we have said,
the virtual machine will not be able to interpret arbitrary constraints.

In the same way a virtual machine interpreting a form-oriented specifica-
tion would work. The dialogue specifications have to be given according to
style formats. They are constraints in the general constraint language, but
have to adhere to the structure defined by the style format. The virtual ma-
chine for form-oriented analysis then takes the constraints according to the
style format and can immediately interpret them.

The concept of style formats recognized by the executing infrastructure is
a major contribution of the high-level programming approach outlined here. It
indicates a novel way of defining special-purpose languages. They are defined
as a set of style formats recognized in a semantically defined framework.



142 7 Data Modeling

7.5.1 Fulfilling Style Formats and Guaranteeing Constraints

A constraint is just a Boolean expression on the model. Such Boolean expres-
sions we may want to use in several circumstances. The Boolean expression
is referring to a state of the system or, in the case of temporal constraints,
to the history of the system. Constraints are part of the model, i.e., they are
themselves static objects, like the other model parts and the whole model. Let
us consider those cases where the constraint is satisfied at any time. What are
these cases? In general, such cases are usages of the system. We could say, if
the system is used according to some non-automatic guidelines by disciplined
people, that the constraint is fulfilled, otherwise it is violated. So it depends
on the usage, whether a constraint is fulfilled or not. Constraints are fulfilled
by system usages. They can however be guaranteed by models. This means it
is not possible to violate the constraint in a given model. It can be that if a
style format is fulfilled, then a constraint is guaranteed. A typical example is
multiplicities. A multiplicity is a constraint on a role, let’s consider an upper
multiplicity of 1. Let’s say that there is exactly one transaction that would
violate the multiplicity, if called, e.g., by inserting two links. If in the system
this transaction is never called, then the constraint holds. Hence the system
fulfils the constraint. This cannot be checked statically, because the fact of
whether a transaction is called or not is in general not statically checkable.
Often we want to ensure statically that the multiplicity holds. Therefore we
demand that no transaction may contain an operation that could possibly
violate the condition. Therefore it is a style format. It is an enforced pro-
gramming style; a static checker can keep track of compliance to this style
format. That is what happens semantically to some extent with programming
languages through the concept of the array type and the corresponding single
type. In an array type one can insert a new element. Into a single element
one cannot even possibly insert two elements – the program would be rejected
by the type checker. The shortcoming of common programming languages is,
however, that a single type cannot replace an array in read access. This is
overcome in our modeling approach, as we have outlined earlier.

7.5.2 Implication Relation Between Style Formats and Constraints

A style format can be used as a result of a translation of a declarative con-
straint. The translation involves making decisions, i.e., the resulting constraint
can be stronger than the original declarative constraint. This means that we
have to consider an order that expresses an increasing strictness of constraints,
which connects declarative constraints with statically checkable style formats.
A style format S guaranteeing a constraint A is then stricter than A, but less
strict than every constraint B that is not guaranteed by S.

On the relationship with the strictness order of style formats we can say:
it is compatible with the style format strictness order, i.e., a stricter style
format never guarantees fewer constraints.



7.5 Style Formats 143

7.5.3 On the Choice of Style Formats

The use of style formats is almost always intricately combined with parts of
the model, where a selection from a plethora of possible designs had to be
made, and therefore a certain clearly defined amount of arbitrariness played a
role. This kind of arbitrariness is unavoidable in principle. Style formats are in
this way a classical example of where our discussion of descriptiveness versus
prescriptiveness has to be applied. By using the term style, we intend to make
the arbitrariness explicit. One example of the underlying phenomenon will
be the discussion on asynchrony. Asynchrony will turn out to be the seman-
tic basis of a distributed paradigm. But there will be a number of different
yet equivalent ways to introduce the concept of asynchrony. One question
in this regard will be the application of another well-known alternative, the
note/strong-composition alternative.

We call such choices positive rules (from Latin positum = placed). The
classic example of positive rules is traffic rules. Even if it may appear more
intuitive, left-hand traffic is at a closer look an arbitrary choice and there are
cultures where indeed right-hand traffic is practiced. Therefore the definition
of the high-level programming paradigm as well as the related message-based
network paradigm will include such positive choices.

7.5.4 Mutual Implementation of Constraints

Constraints can be implemented by other constraints. A simple example is
the implementation of the xor constraint by other constraints. We can imple-
ment the xor constraint by a nand constraint combined with an or constraint
on the same relation types. Such implementations are therefore a decompo-
sition method on the constraint language. In our operational semantics the
executable language is a subset (a number of style formats) of our declarative
constraint language.

Style formats are static constraints on models, i.e., the structure. Con-
straints are constraints on the model states. Sufficient realizations are trans-
lations of constraints into model parts and style formats that fulfill the con-
straints. Necessary realizations are translations of constraints into model parts
and style formats, which are the only possible realizations for fulfilling the
constraints.

7.5.5 The Relation Between Different Specification Styles

The following discussion of different specification styles for different purposes
will be based on a basic business case for the development of software for our
system. The customer is the one who requests a software system from the
software supplier; he or she has therefore the right to express its requirements
freely.



144 7 Data Modeling

Formally we use only a single notion of data model for different purposes,
which in other methodologies may be considered different abstraction layers.

A requirements-driven model is a model that is the result of translating
requirements into a model. In our business case for software, where we as-
sume that a customer orders a software system from a software supplier,
the requirements-driven model expresses the wishes of the customer. There-
fore there are no restrictions on a requirements-driven model. This implies
that a requirements-driven model can contain non-executable declarative con-
straints, because the customer is free to formulate his or her request. It can,
however, of course contain high-level programs as well.

For constraints, which are in their nature declarative, we can define a stan-
dard translation process, which translates them into executable specifications
that satisfy the declarative constraints. These executable specifications may
not necessarily follow from the declarative constraints, i.e., the translation
result is stricter. That means in choosing this translation we make a decision
on how to implement the declarative constraint.

By accumulating such translations, we can translate more and more declar-
ative constraints into executable specifications. There are three possible results
of translations of a declarative constraint into an executable constraint:

• A style format instance. We have said that such style format instances
are statically checked. This happens, for example, to an immutability con-
straint. The constraint is translated into a style format, which makes sure
that no updates take place that could violate the immutability. This is
an example of a case where the original constraint is translated into a
sufficient, but not necessary constraint.

• A high-level program part. Again, the high-level program part may be
stricter than the declarative constraint. It is worth noticing that in some
cases the constraint is hardly translated at all, but is used as a check in
some part of the system. Many of the dialogue constraints are translated
in this way into the Boolean expression of conditional statements within
a TDAL query.

We understand the DAL and TDAL expressions simply as constraints on
the data model. Being a high-level program, i.e., containing only executable
specifications, is a style format, and even a very simple one. It implies that
only the DAL and TDAL expressions are used as constraints on the data
model.

In our methodology the transition between models of different abstraction
levels is smooth.

Relevance for the Constraint Language

The considerations about the translation of declarative constraints into other
constraints are also of relevance for our subsequent presentation of common



7.5 Style Formats 145

generic constraints. It is quite natural to understand such generic constraints
as first of all declarative. An example is a multiplicity. Such a multiplicity
will be intuitively defined as a constraint that restricts the number of links
that may be connected to instances of a certain entity type. It will turn out
however that in the application we want to translate such multiplicities into
static checks, so-called style formats, which ensure on the model itself that
the constraint can never be violated.

Our general approach prefers the definition of constraints as declarative
constraints, so that different translations into style formats can be used.



8

Message-Based Modeling of Data Interchange

In this chapter we discuss a form-oriented model for communication between
automated systems, which is fully integrated and compatible with the form-
oriented user interface model. The user interface is an immediately tangible
access to enterprises systems. But enterprise systems also communicate with
each other. If this communication is between organizations, then the actual
content of the communication becomes an analysis-level concept. It is about
what one organization says to another, in most cases surely in the context
of mutual commitments. We turn therefore to our network model of servers
which communicate with messages. In this chapter we introduce modeling
methods, which represent these networks according to this fundamental sys-
tem view. The model developed here not only is easy to employ in the system
specification, but also maps naturally on many implementation platforms,
including EDI and Web services.

8.1 Connectivity of Enterprise Systems

The automated communication between systems is one of the cornerstones of
an efficient IT infrastructure within or between organizations. The challenges
here are not just the different technologies used by different organizations
and the agreement on the semantics of the exchanged messages. A further
important issue is related to system stability. An organization participating in
automated communication wants to make sure that the use of the automated
interface does not endanger the stability of its own system. But also within a
single organization very similar stability demands for system communication
appear, since the desire is to decouple the systems with respect to failures so
that no single event can endanger the whole IT infrastructure.



148 8 Message-Based Modeling of Data Interchange

8.1.1 Message-Based Middleware

An established best practice for the implementation of data interchange be-
tween different system units is the use of message-based middleware. In using
message-based middleware, systems can send information asynchronously to
other system parts. The delivery can be configured to follow different qual-
ity of service (QoS) levels. A particular high-quality service can be obtained
by the use of persistent messaging. A crucial element of the message-based
infrastructure and a key difference to simple remote method invocation is
the existence of queues, which store the messages until they are retrieved
by the receiver. The queues fulfill two intertwined purposes. First they pro-
vide a buffer for bridging temporal load peaks; of course this means that the
queued requests experience a delay in response time. Secondly they provide a
means of secure intermediate storage; in the case of persistent messaging this
is a transactionally safe storage. Asynchronous messaging services are used to
build synchronous request/response services on top of them.

We recall that the transaction service enables consistent multi-user busi-
ness logic on shared data. Persistent messaging now is attractive, since it
allows combining independent transactional systems in a transactionally safe
manner, without creating the considerable overhead of a distributed trans-
actions framework. The use of a global distributed transaction service based
on two-phase commit has not prevailed as a viable infrastructure. The two-
phase commit protocol has the disadvantage of requiring the prepare com-
mand, which has a considerable footprint on the respective database where
the prepare is performed, since it requires the database to remain in this
state until the commit message is received. The persistent messaging service
here has the advantage that after sending the messages to the service the local
resources are immediately freed. We can imagine the local networks, each ser-
viced by a true two-phase commit distributed transaction service, as islands.
These islands can be connected by persistent messaging services, so that trans-
actionally safe cross-island processes can be performed, without slowing down
the local transaction services.

The message-based paradigm is the foundation of our network model. The
consistent use of this paradigm not only provides a simple and adequate model
for specification purposes, but also ensures that the specification is directly
translatable in many current architectures, including persistent messaging and
Web services. Our message-based network paradigm is part of the high-level
programming paradigm.

8.1.2 Electronic Data Interchange

Message-based data interchange is used in many mature technologies. EDI
is an implementation technique for business message interchange [109]. EDI
allows communication with high QoS, which can furthermore be customized.
The interchange is traditionally on dedicated networks, so–called value–added



8.1 Connectivity of Enterprise Systems 149

networks. EDI furthermore defines industry-wide message types, which can be
seen as one of the most important examples of domain models, i.e., common
models for an application domain. A system based on EDI can easily be
modeled with form-oriented techniques, and the form-oriented description can
be seamlessly mapped to a design for a system communicating with EDI.

8.1.3 Web Services

Web services [8, 51] are an implementation technique for message communica-
tion. They use XML as the format for messages; XML Schema is the basic type
system [295, 24]. Notations for distributed systems based on Web services are
called Web service orchestration languages. The currently most discussed Web
service orchestration language is BPEL [291], also called BPEL4WS. It is a
joint effort by IBM, Microsoft, and BEA. BPEL4WS is technology-dependent.
It describes only Web service communications. It is not appropriate for mod-
eling at the design or analysis stage. Structurally BPEL combines a data flow
approach with a process model based on pi-calculus.

Web services use a type system given through the XML Schema concept.
XML Schema is only implicitly a type system. Conceptually, XML Schema is
a memory mapping schema for a type system. The memory model is a tape
with the ASCII alphabet. Deployed Web services are described by the Web
Service Description Language WSDL. This language allows the specification
of configuration information, i.e., about the data transmission options chosen.

8.1.4 Integration of Legacy Systems

A major application area of middleware is the integration of legacy systems
with added systems or the interconnection of previously unconnected systems.
All kinds of middleware are used, while no single type of middleware can be
used as a one-size-fits-all solution. CORBA is a well-known middleware for
legacy integration, which offers a synchronous remote procedure call mecha-
nism among other services.

8.1.5 Component Orientation

Message-based technologies are used by component frameworks as well. These
component infrastructures started in cases with proprietary communication
paradigms; now they include message based interfaces as well. The notion
of component orientation has become a much overloaded concept in recent
literature. We want to single out two different aspects and consequently use
two different terms, namely shelf components and plug components, for these
two different notions. They should be kept separate, since there is no necessary
interconnection between them.

There is one aspect in the notion of components which concerns the stabil-
ity of a component. This is usually mingled with other aspects of component



150 8 Message-Based Modeling of Data Interchange

definitions. Components are intended to be stable and self-sufficient units of
code, but these notions are generally not made precise. We are looking for a
precise capture of this notion and want to call it the concept of shelf compo-
nents. The motivation for a notion of this kind can be found in the vision of
complex infrastructures created by commercial off-the-shelf (COTS) building
blocks. In this vision the independence and stability of components serves as
a warrant for the viability of stable architectures built in that style. The ap-
propriate functional specification to use for shelf components is the concept of
a unit system, beause unit systems have a protected state. In doing so we en-
sure that shelf components have only one way of communicating, namely the
messaging paradigm. The communication across the unit system boundary is
exclusively message based. An analogy may be drawn to the separate address
spaces of operating system processes. Are all transactional systems shelf com-
ponents? The answer is no, since not every transactional system represents a
whole unit system. A transactional system may be only a subsystem of a unit
system. Two transactional system within one unit system may interact with
each other through updates on the state.

The second aspect of component notions is a special composition concept
which we call the concept of plug components. They are supposed to com-
municate with the outside world over connections for which they provide a
port. They should be plug-and-play enabled by so–called glue to arbitrary
other components which match under certain matching criteria. The most
natural matching criterion, however, simply uses typed ports. Ports have a
type and usually a direction with respect to this type. Ports with equal type
and opposite direction match, other ports do not match. The concept of plug
components is related to architecture description languages, ADLs. In our ap-
proach, plug components can be mapped to unit systems as well. Outgoing
ports of a unit system are the message receivers of the outgoing messages of
this unit system. They are left abstract in the unit system definition and can
be changed by the glue. Ingoing ports are the transactions of the unit system.

8.2 The Message-Based System Viewpoint

If we work in today’s system landscape, the scope of our analysis goes in
many cases beyond a single organization. We want to analyze a network of
organizations, always open to include new organizations. There is one impor-
tant point we have to realize: the system landscape we are interested in in
this case is already distributed on the analysis level. Our whole view of this
scenario is necessarily one of a net, not only for technical reasons! This is very
important, since it is a good point to train our skills in sensing the different
abstraction layers. Think of the concept of a very integrated service provider.
That is a company that offers a computing center to its corporate customers.
The companies using these services have the majority of their computing in-
frastructure on the provider’s servers and work only with thin clients. It is the



8.2 The Message-Based System Viewpoint 151

natural extension of typical webmail accounts, and it was indeed one of the
visions at the start of the Java era. Java started as a language for applets, and
the net computer was the vision. This vision did not prevail, for a number of
reasons we know or we can at least guess on ex post. Today different companies
typically have their own servers, and communicate over the net. But would
we have to abandon our style of working completely, if the service provider
vision worked out? Would it then be outdated, or even impossible to think
of the companies as distinct players in a net? Certainly not, because even in
this case the companies would of course be strictly different entities and their
systems would have to be strictly protected from each other! It would be the
service provider’s responsibility to enforce this. It is certainly not impossible
to do so; webmail accounts are a good start. The companies would still send
messages by email or similar services to each other. The boundaries between
the organizations and the messages which they send to each other are hence
not a haphazard product of the underlying technology, but a concept of the
analysis level, of the business model itself. If we change the implementation,
this must not change the status of a message between organizations, let’s say
an order or contract. This idea is of course easily blurred by the fact that
indeed the technical possibilities may lead or even force us to change the
business processes; the availability of mail has changed over time the way we
do business. But we still have to distinguish between the technology and the
processes we use it for. This is why it is an important step for the reader to
understand that it is not a concrete technology, like Web services, which is
the new business model. The concrete technology is replaceable, even if the
fervent advocates of such technologies would not like to hear this. The partic-
ular technology makes only a difference with respect to the quality of service
it is able to deliver, because this is important for the question of whether the
respective information channel can be used for a certain business communi-
cation; in this regard we will later see that not always the newest and hottest
technology does the best. E-mail, for example, has today a serious problem
with spamming, while alternative services for business-to-business, such as
EDI, do not suffer from these problems at all. The generic analysis model
of our world of interacting organizations is hence our business network. The
organizations have a corporate identity and unity; they are the nodes. They
communicate with messages, which have meaning to the users, and which are
not artifacts of our chosen technology. These messages are semantically what
we call asynchronous messages. This basic network model has therefore unit
systems, which communicate with messages, and is a hierarchical model. Of
course one asks immediately: Can we make this model hierarchical, and offer
the possibility that the nodes, which are now unit systems, can themselves be
constructed as such a network? We therefore will present the message-based
paradigm in full generality as a hierarchical model.



152 8 Message-Based Modeling of Data Interchange

8.3 Data Interchange Model

The data interchange model captures the message-based interaction between
systems in a network. It is based on the interface description of the systems
in the network.

An important aspect of our modeling approach, which will play a role in the
data interchange modeling, is related to our typed approach to unit systems.
Unit systems are compositions, i.e., a single unit system is represented by
an instance of a type, and all data types of its content model are related by
a master relation type. We therefore have the notion of a unit system type
and a single unit system of this type. Several servers, which run the same
software would be modeled as several instances of the same unit system type.
The data type interchange model considers the unit system types and their
communication.

8.3.1 Interface Descriptions

We call the set of all transactions of a system the business interface of the
unit system. We can of course create subgroups of the transactions offered by
a system. We call such a subgroup a business subinterface of the unit system.
The server actions of a formchart are transactions as well. They comprise a
business subinterface of the system and are part of the business interface.
The business interface without server actions is the automated interface. A
business subinterface of the automated interface is a service interface. Building
subinterfaces is a special case of model union, the decomposition mechanism
of formcharts.

We recall the automaton model of transactional unit system types. A
transactional unit system has a finite number of business transactions, which
are triggered by ingoing messages. The business transaction is defined using
TDAL. Each business action can provide a list of outgoing messages at the
end of its operation. We call the description of the message types involved
with each transaction the bidirectional transaction signature, and they will
form the building block of the model we describe here. Each such signature
is a pair consisting of the input type and the collection of output types of
the transaction. Note that the list is a static property and therefore con-
tains exactly the message types, for which producing code is contained in the
transaction. Taking all transactions of a unit system together, we define the
bidirectional system interface simply as the collection of those bidirectional
transaction signatures.

The unit system addressed by a message has a type and a unit system
identifier, which is simply the entity instance representing the unit system.
This identifier is part of the message.



8.3 Data Interchange Model 153

shiporder 

message
representing transaction

unit system

inquiry

messages of bidirectional 
transactional signature of “order”

CRMprocess

welcomeMessage

output type

deliver

getinsuranceadvertise

input
type

Fig. 8.1. An example data type interchange diagram showing all the notational
elements

8.3.2 Data Type Interchange Models

A data type interchange model, DTIM for short, represents a distributed sys-
tem consisting of unit systems by representing the involved types of messages
and systems. It is a directed graph with message types as nodes, plus an out-
put collection and input collection described later. An example showing the
notational elements is shown in Fig. 8.1. Each message type m in the model
is the superparameter of one transaction of one unit system. A directed edge
leads from message type m to message type a, if the transaction with su-
perparameter m is producing an outgoing message of type a. The outgoing
edges from message type m therefore represent all the outgoing messages of
A. Therefore we find the bidirectional transaction interfaces represented in
the DTIM. A message type can have many ingoing edges as well, coming
from all the transactions that can produce such a message. A message type
represents outgoing messages as well as the receiving transaction at the same
time. Another aspect we want to express is the association of transactions
to the unit system they belong to. The transactions are represented by their
superparameter message types. So we can conceive all transaction superpa-
rameters belonging to one unit system as a group within the graph, and we
call such a group a model subsystem. However, in the DTIM these model
subsystems are rather only comments; it is one of the properties that these
subsystems do not play a crucial role in the semantics of the diagram. There
is a certain asymmetry in this diagram between ingoing and outgoing edges.
The system can in principle receive inputs of any message type. However, in
order to indicate that the system is producing output to the environment, it
has to have message types which do not represent specified transactions, but
outgoing messages. These message types form the output collection, each one



154 8 Message-Based Modeling of Data Interchange

called an output type. In the following we also want to have the possibility
to explicitly define which messages can be received from the environment; we
call them input messages, together forming the input collection. Each choice
of messages from the model is valid as the input collection. By not including
a message in this collection we express that this message does not relate to a
publicly available service of the distributed system.

The input collection allows of course for a dead code analysis. Transactions
with superparameters not reached from the input collections can never be
called.

8.3.3 Compositional Properties of Data Type Interchange Models

The whole distributed system expressed by a DTIM can itself be conceived as
having a single interface. This interface can again be given as a bidirectional
transaction interface, which means that the whole system is considered as a
single subsystem in a larger system. For each input method we choose those
messages from the output list which are reachable in the directed graph.

a

ab
b

c

c

Fig. 8.2. Similar to functional decomposition, a model subsystem in one DTIM can
be defined by a whole sub-DTIM

Together this information has the desired form of a bidirectional system
interface. In this way we can use one DTIM a as a model subsystem in another
DTIM b. This is shown in Fig. 8.2. The relation between the two diagrams
shows that this is a compositional concept. We can form larger diagrams, by
modeling subsystems and connecting them with a diagram on a higher level.
This is similar to functional composition. The subsystem can be said to be
called over its interface by the higher level system. Of course this concept also
gives rise to an operational notion, namely for the procedure of inflation of
such a node, by which the node is replaced by the full DTIM. This operation is
a composition operation; the inverse, i.e., the inflation of a part to a node and



8.3 Data Interchange Model 155

the creation of a separate DTIM, is a decomposition operation. Besides these
operations one can use feature composition, the general composition method
for source code as well.

We call the edges between two messages from the same unit system self-
edges. There is an interesting aspect concerning self edges: in principle, such
edges could always be omitted. This is shown in Fig. 8.3. The DTIM with self-
edges contains more information than the DTIM without, since the latter can
be straightforwardly obtained. But this information is internal information
about the subsystem, hence we usually want it to be removed in favor of
higher abstraction.

u

v

a

i

h
u

v

a

i

h

Fig. 8.3. Edges between actions within the same model subsystem can and should
be replaced

There is, however, a crucial semantic difference between an interface ob-
tained this way and the analogous interface for a unit system. While in the
case of the unit system the parts of the bidirectional system interface represent
transactions, this is not the case in the newly constructed interface.

The grouping of several unit systems in one distributed system has a strik-
ing intuitiveness. However, a closer look leads to an even more basic view of
the underlying compositional structure. In fact one can see the true composi-
tional operation as being performed on bidirectional transactional signatures
only, giving rise to the general concept of bidirectional signatures. A bidi-
rectional signature can be composed with a signature of one of its outgoing
messages to form a new bidirectional signature. The former composition con-
cept for data type interchange diagrams can be explained by this operation.
If two bidirectional transactional signatures are composed in this way, the
resulting operation is not transactional in general. This motivates the possi-
bility to explicitly specify such a composed operation as transactional. Such a
specification means that on the implementation level it has to be ensured that
the transactionality is observed. The usual solution to this is that both oper-



156 8 Message-Based Modeling of Data Interchange

ations are performed under a distributed transaction mechanism. We call the
operation, which is triggered by an ingoing message into a system, in general
the action. If the system is a unit system, this action is a transaction.

8.3.4 Message-Based Modeling of Data Model Access

So far the role of the unit system is a minor one in the data type inter-
change diagram. This role can nevertheless be enhanced by integrating the
data model access into the message-based paradigm. The transactions serv-
ing as the building blocks in the data type interchange diagram participate
in two interaction paradigms. On the one hand they communicate with each
other in the message-based paradigm; on the other hand they have access to
the data model by using DAL operations. There may be a need to use occa-
sionally a model which offers a certain reduction towards a single paradigm,
as far as possible. For this purpose it should be pointed out that each DAL
operation, which is used in a TDAL transaction, can itself be modeled as a
transaction. Therefore a natural message-based refinement of a DAL transac-
tion is a system where the control flow in the TDAL program is modeled in
a message-based manner, while the single DAL operations are performed as
message-based communication with a different system. We call this system the
database node, because it is basically the database with analogous precompiled
statements. These precompiled statements receive only actual parameters at
each call, and then deliver the result set as a message. This model represents
fairly well the actual design of multi-tier applications.

8.4 Data Interchange Specification

The DTIM enables us to discuss characteristic specification patterns in full
analogy to the dialogue specification within form-oriented interface modeling.

8.4.1 Flow Conditions

In DTIM a flow condition is a specification on an edge between two message
types s and r, which specifies the conditions under which such a message
will be sent. It is therefore analogous to the flow condition for formcharts. A
crucial difference arises nevertheless, since one transaction can send multiple
messages, even of the same type. The flow conditions therefore do not have
to be exclusive in any way. A flow condition is meant to specify whether any
message of the given type is sent at all.

8.4.2 Output Specification

The output specification on an edge between two message types s and r speci-
fies the set of messages of type r that has to be sent. There are two approaches,



8.4 Data Interchange Specification 157

giving it either as an output query, which actually has the message set as a
result set and is therefore a high-level programming directive, or as an output
constraint, which is a Boolean condition on the result set and is in general a
non-executable specification.

8.4.3 Side Effect

The side effect specification is simply the TDAL program that represents the
transaction. This side effect specification is primarily designed for messages
representing transactions. But it can be used for a node, which represents a
distributed system itself, as well. It is then used to specify the overall func-
tionality with respect to this message. Of course one has to pay attention here
to the transactionality. In a typical project this can take different forms. One
common case is that one starts with a side effect specification in TDAL, which
is understood as not being transactionally atomic. During replacement of the
node with a distributed system, one reaches a functionality which has weaker
but still sufficient transactional properties. This is a very economic method of
using the formalism at hand. On the top level the transactional specification
with TDAL is the simplest way to sketch the functionality.

8.4.4 Synchronization Specification

Synchronization is a notion from concurrency models, specifically from Petri
nets. If each transition in a Petri net is annotated with a type, then the
synchronization must be replaced by a program that performs a composition
of the messages as well.

Synchronization can appear in purely automatic processes as well as in
processes that involve user interaction. In the DTIM formalism the distinction
can be made either transparent or abstract.

In our framework a synchronization construct is a constraint. If n message
types have to be synchronized, the unit system has to possess n transactions
receiving the message type. Each of these transactions has an outgoing trans-
action of a single compound type. Some data flow approaches avoid the syn-
chronization concept, because it is indeed restricted. It favors synchronization
between statically distinguished message communications over synchroniza-
tion between homogeneous messages. For example, if a synchronization event
requires that all members of a team have to send an acknowledgement, this
cannot be expressed with the usual static synchronization constraint of, for
example, activity diagrams, since all these notifications follow the same tran-
sition.

Instead the synchronization constraint has to be modeled on the non-static
data content, like is done in our data interchange specification. The data in-
terchange specifications hence express our view that just evading the problem
is no solution. A synchronization specification targets several transactions.



158 8 Message-Based Modeling of Data Interchange

8.4.5 Additional Targeting of Edges

Flow conditions, side effects and output specifications are so far described as
targeting not the ingoing edges of the transaction they refer to. In all these
cases it could be argued that one can give meaningful semantics if they would
also be allowed to target ingoing edges. The straightforward semantics is that
of a path expression that is connected with an and. As an example, consider a
side effect specification on transaction receiveFlawReport, which has the task
of receiving reports about books with missing pages, etc., and of initiating
action, if this seems to be repeated for the same edition. A flow condition
could say that a notification is sent to customerRelationship, if this report is
from a customer. It could be that the messages from customers come along
a different ingoing edge than the messages from an employee. Therefore we
could express this by targeting the incoming edge of customers by our flow
condition. The flow condition body could actually be empty in this case, since
the flow condition is expressed solely by targeting the appropriate edge.

8.4.6 The Operational Semantics of the Data Interchange
Specification

The data interchange specification is a special case of the data model for a
network. It is a feature of the network model. A DTIM does not have to contain
DAL and TDAL operation specifications. It contains however connectivity
specifications, which can be in the whole model combined with DAL and
TDAL specifications.

One can say that DTIMs discuss the partitioning of a model into a network.
A DTIM restricts the possible paths on which messages can be sent. Note
that we do not say it defines the paths on which messages are sent. It can
be that for a declared message there is never a message that flows. Usually
one will require that a DTIM contains only message flows for which there is
a transaction that sends it.

The key notion in the operational semantics of the network model is the
effect of a single external message. The message goes to a transaction on
a node, then the transaction may trigger new messages, and so a message
cascade is started, which is supposed to terminate. Messages going out of
the network have in this view no subsequent effect; they are outputs of the
network.

The second aspect of this operational semantics is that it is concurrent,
i.e., in the semantics we have to be aware that the state of each node, which
can be targeted by two messages, may have changed in the meantime due
messages from other message cascades that are taking place concurrently.

The fact that messages going out of the system could cause new messages
within the neighboring system is dealt with under the notion of the union
of systems. The message cascades in the unit system form a single message
cascade in the whole system.



8.4 Data Interchange Specification 159

The notion of coordinating the messages within one cascade is what is
dealt with, e.g., in the notion of Web services orchestration. It is one of our
results that we see here two major alternatives for dealing with this kind of
coordination. The orchestration approach is rather the approach to establish
coordination patterns on the message graph level. We prefer the semantic
approach, which achieves consistency results by making the individual nodes
consistent against non-deterministically incoming messages by classical se-
mantic invariants on the internal model. The coordination approach is only
used where necessary.

The concept of the cascade is where the network model goes somewhat
beyond the notion of the TDAL program itself. Our network model is how-
ever based on one fundamental principle concerning the relationship between
distributed and local systems. The distributed systems are in our approach a
special case of local systems, not vice versa. Distribution is a style format on
a model that prevents certain DAL and TDAL operations that would be al-
lowed on a local model. However, with the concept of distributed transactions,
these operations could be allowed again.

A distribution scheme is a graphical description of the distribution in a
system model. Within a system model one can use distribution schemes in
different layers. The data type interchange diagram is in principle a distribu-
tion scheme. A distributed transaction service for example would appear as a
unit system in the system description. The distribution scheme which consid-
ers this distributed transaction service as an opaque unit, is the distribution
scheme that catches the distributed semantics of the system. One has to keep
in mind that a distributed transaction scheme behaves like a local system. If
one is interested in the physical distribution, however, one may want to con-
sider the unfolding of the unit system in the bigger diagram. Both diagrams
are connected by a generalization of the concept of elision.

8.4.7 Application of the Data Interchange Specification to
Form-Oriented Modeling

DTIMs can be used to specify server actions. The mapping of user messages
from Sect. 7.3.4 applies here. Again, it has to be ensured that always exactly
one client page is sent back. The terminal client where the dialogue according
to the formchart takes place is usually one subsystem. All client sessions are
instances of this unit system.

Within a server action modeled in a DTIM it is possible to query a remote
system and to forward the response to the user. Take a look at the example
in Fig. 8.4. In this example we assume that the user authentication service is
on a remote system. The example shows a cutout of the bookshop formchart
with one server action LoginForm. Note that this cutout is exactly the neigh-
borhood of the LoginForm server action. The two solutions below show two
different specifications of this formchart cutout with DTIMs. The interface of



160 8 Message-Based Modeling of Data Interchange

Login

Form-Oriented Client Bookshop System Customer Management

Authentication
Service

Receiver
Welcome

LoginForm

WelcomeLogin LoginForm

Login Authentication
Service

FailReceiver

Welcome

LoginForm

OKReceiver

flow: incorrect password

Solution A

Solution B
flow: incorrect password 

Fig. 8.4. Example DTIMs describing how the login dialogue accesses a remote
authentication service

the remote customer management determines which alternative is the right
one.

All client pages are in the leftmost unit system, the form-oriented client.
The transitions between the leftmost unit system and the bookshop subsystem
represent all ingoing and outgoing transitions of the server action LoginForm
in the formchart. The node LoginForm in the bookshop subsystem represents
the actual message type LoginForm from the user messsage model. The sub-
mitted form goes to this transaction. The bookshop subsystem queries an
external customer management system about the authentication. This sys-
tem answers to a receiver transaction. There are two natural variants for the
interface of the authentication service. In solution A it sends back one message
type containing the statement on the validity of the user request. In solution
B it sends an error message in the case of an invalid request. The bookshop
then has to offer two receivers for the respective message.

8.5 The Relation to Data Flow Diagrams

The DTIM is naturally derived from the information at hand in the modeling
method. We want to discuss the relations between the DTIM and Data Flow
Diagrams (DFDs) used in methods like structured analysis.



8.5 The Relation to Data Flow Diagrams 161

8.5.1 A Reconstruction of Data Flow Diagrams

We can also represent a form of DFDs within our data modeling method,
which is similar to DFD notions in other modeling approaches like structured
analysis. A DFD can be obtained from a DTIM by reducing the information
content. An example of two equivalent diagrams is shown in Fig. 8.5. This re-
duction is best explained for a unit system u. In a DTIM the neighborhoods of
the messages associated with u represent the bidirectional transaction inter-
face of u. In a DFD the outgoing messages are not drawn from the particular
action of the unit system, i.e., not from a particular ingoing message. Each
bubble in a DFD depicts simply the list of ingoing and the list of outgoing
message types of a unit system, and is therefore obtained from the bidirec-
tional transaction interface by omitting the information about the relation
between incoming message type and outgoing message types.

w

u

v

u

v
w

DTIM
DFD

a

a

b
ci

a

b

c

i

h

hh

jj

Fig. 8.5. A DTIM and an equivalent DFD

The bubbles are connected by edges, which are annotated by message
types. At this point one has to say that there are two principal modeling
alternatives concerning message types. Either one can assume a message type
is bound to a certain unit system. Then messages with the same information
content but going to different unit system types are built by creating new
message types. This notion can be seen as including the recipients address in
the message. It is in accordance with the semantic situation in the underlying
type system. The other alternative is to allow the same message type to go
to different unit systems. We call such a type a message body type. Both
approaches can be used for annotating DFDs, but it is important to choose
one in advance. The advantage of using message body types is that it usually
does not double the information contained in the diagram.



162 8 Message-Based Modeling of Data Interchange

The use of the message body types implies that it is more consistent to
allow one message body type to enter a bubble multiple times. We call each
of these occurrences of a message body type a port. The ports are distinct. A
DFD must have model elements for ingoing and outgoing messages connecting
to the environment, called terminators. The collection of terminators has the
same structure as the input and output port collection of the bubbles. The
decomposition of DFDs works therefore in the same way as in DTIMs.

In DFDs one message input port cannot be addressed by multiple senders.
This concept has been sacrificed for the sake of a simpler syntax model. It
has to be modeled by its own bubble, which has to be redefined each time a
new producer is added. There are of course a number of obvious solutions to
support this concept. Note here that the graphical representation is not the
interesting point. Whether one chooses to draw arrows with multiple sources,
flowing together in the middle, or special generic processes, which have always
one exit and arbitrarily many input ports of the same message body type, does
not make any difference. A notable difference can be found if we choose ports
sitting on the bullet periphery, which can be addressed by multiple arrows.
The difference here is that the port is always there, even if only one arrow
goes in. This is already some kind of bipartite diagram!

8.5.2 Bipartite Interaction Model

A bipartite interaction model following the DTIM approach is the data pool
model. It is a bipartite graph with one node set being actions and one node
set being message body types, called pools here. Given a mapping from mes-
sages to message bodies, a data pool model can be obtained from a DTIM by
replacing each edge in the DTIM by two edges, one from the sending action to
the message body type and one from the message body type to the receiving
action. A data pool model contains less information than a DTIM, since static
information about the receiver is lost.

8.6 The Interplay of Formcharts and Data Interchange
Diagrams

8.6.1 The Mailbox Interface – a Web Services Browser

Another useful interface concept besides the session terminal is the mailbox
client we have mentioned before, which is basically an e-mail account for
sending typed forms and receiving typed reports. The mailbox client can be
addressed as a recipient by any unit system in the network. One difference
between the mailbox and terminal is that in the mailbox the sender and
recipient within the messages are visible. The inbox can be sorted by time as
usual, or partitioned according to the types of ingoing messages first. Each
type of message then has a separate inbox. For the conceptual discussion,



8.6 The Interplay of Formcharts and Data Interchange Diagrams 163

which is our main focus, it is not important to have lots of features for mail
organization, therefore we just assume that the messages are kept forever, in
order of their receipt.

The message composer, with which the user can create new messages,
again follows the type system, i.e., first the user chooses which message type
he or she wants to create. If a message type can contain opaque references, the
user can fill in opaque references from all messages he or she has previously
received. The only constraints here are the types of the opaque references.
With respect to multiplicities there are two approaches: either the mailbox
client enforces multiplicities, or it does not. These approaches therefore yield
in some sense to two subtypes of the mailbox client, but we do not want to
overemphasize this aspect.

The mailbox client is intended to represent the maximally non-modal client
as the opposite concept of the modal client which is represented by the form-
chart. The two interface concepts are designed to serve different specification
demands.

8.6.2 The Different Roles of Terminal and Mailbox

The terminal defined by a formchart in some sense represents the more im-
mediate user’s view of the system. The form-oriented user interface model as
provided by the terminal client is the interface model which allows the user
interface to be specified directly as a black-box model of a system, but never-
theless includes such advanced concepts as the direct manipulation of opaque
references. The user interacts directly with the black-box interface; there is no
complex mediating technology. In fact this is another facet of our observation
that you can abstract from page interaction. In some sense you can say that we
use here one of the basic assumptions that today’s basic interface metaphor,
graphic screen, and pointing device are indeed a direct manipulation tech-
nique. It is a good thing to realize that such terms like direct manipulation
always contain a hidden premise, and perhaps the form-oriented approach has
a nice incidental contribution in allowing the explication of this assumption.

The other interface model, the mailbox client, is in some aspects similar
and in other aspects a complementary model. The mailbox client is designed
to be a good interface for the system model.

If we want to verify whether a system according to the specification fulfills
the demands of the users and the domain experts, the formchart is the most
appropriate tool. Now only with a formchart specification does the system
become tangible and amenable for discussion and negotiation. If the system
is only given as a set of transactions, it is not easy to say, let alone to achieve
agreement about, whether the system achieves what it is meant to achieve.
The system architect, who is not specifically considering the design of the user
interface, may on the other hand consider using the mailbox client. Somehow
this is compatible with some intuition about user interfaces. Specially trained
personnel could be said to be power users. Power users prefer non-modal



164 8 Message-Based Modeling of Data Interchange

dialogues, since the guidance by modal dialogues is for them of little or no
value, whilst the impediment through the modality is a serious drawback.

While the formchart represents the end user’s view of the system, the
non-modal terminal represents not only the power user’s view, but also one
of the software engineer’s views. If the software engineer wants to explore the
business method interface, then he or she can use the mailbox client. The
mailbox client allows the most general interaction with the system.

8.7 Topic Bundles

The simplest way of topic bundling happens through business transaction
identities. In classical communication we know headlines like “your mail from
2004-03-04.” The date is supposed to establish a unique reference; it is a nat-
ural key. Order numbers are artificial keys. In our framework we use opaque
keys. These keys represent the activity itself. Based on this we give a descrip-
tive, not prescriptive process model. We define the process simply as the set of
all communication referring to the same key. We call such a set for a key k the
topic bundle of k. If a process or dialogue is triggered by an initial message,
this message is a natural choice to represent this process. It may however be
advisable for reasons of code architecture and separation of concerns to pro-
vide an independent type that subsequently serves as the business transaction
identity type.

The instances of business transaction identity types can be seen to rep-
resent process instantiations. The fact that this concept lives on the level
of coding guidelines adds a considerable amount of flexibility to the process
support offered by the fundamental DTIM framework, and shows also that
process paradigms live on a different conceptual level than process-enabling
technology. Each process paradigm is a different topic-bundling approach, and
since the possibilities for different topic-bundling technologies is not bounded,
there is no limit to the possibilities of process technologies.

As an example, a concrete process technology could support the branching
into subprocesses and their later reunion, another paradigm could only allow
for processes that follow a finite state machine paradigm. In a third process
paradigm the one subprocess could split from one main process and later rejoin
a different main process, and so forth. The fundamental insight, which could
perhaps even help the process modeling area to consolidate their modeling
paradigms, is that a specific process model should be a module, implemented
on top of a general model that enables processes, but which does not restrict
the process notion in itself.



9

A Descriptive Approach

Concrete software management differs in different projects due to the problem
domain, project scope, and business culture. This has to be taken into account
if concrete software development activities are discussed. We do not prescribe
a software process in this book. Instead we propose artifacts and argue how
they can be exploited to improve system development activities. Of course, the
different degree of formality of the different artifacts as well as the proposed
composition mechanism hint at a process like intuitive succession of diagrams
from informal to formal, but it is important to realize that this is by no means
necessary. Since the semantics of the diagrams is completely independent from
any process definition, the diagram is basically neutral with respect to its
use in a process of whatever kind. Therefore we coin the notion of artifact
orientation that can be exploited for empowering developers and improving
the agility of software projects.

This chapter discusses several topics that are related to software process
in one sense or another. In Sect. 9.1 we discuss two possible viewpoints to
software processes: descriptiveness vs. prescriptiveness. In Sect. 9.2 we dis-
cuss problems of metaphors in software engineering. Sect. 9.6 introduces ar-
tifact orientation and explains how it can be considered as the core of an
ultra-lightweight software process. Visual modeling has been a widely recog-
nized concept in the recent past. We explain our position to this concept in
Sect. 9.5. Model-based software development has been a central topic within
the software engineering community; this is documented by terms like com-
plete specification, executable specification, forward engineering, reverse en-
gineering, and recently model-driven architecture. High-level programming is
our defined viewpoint with respect to all this, which is further discussed in
Sect. 9.7. The chapter finishes with a discussion of advanced systems modeling
approaches in Sect. 9.8.

But before all this we first have to explain our general notion of descrip-
tiveness, our opinion about modeling in general, and our opinion about the
role of knowledge in modern software engineering organizations.



166 9 A Descriptive Approach

Descriptiveness in General

It is not obvious how to discuss applied sciences against the background of
established philosophies of science [47]. Nonetheless each applied scientist has
the challenging duty to define his or her personal working moral. Is an applied
scientist a person who uses scientific knowledge to solve practical problems? Is
he or she an inventor, an innovator, a troubleshooter? Aren’t these the tasks
of an engineer? So what is the difference between an applied scientist and an
engineer?

We assume that in applied sciences an object of investigation has a prac-
tical problem side and a practical solution side. However, an object of inves-
tigation should be a family of problems and solutions that are dependent on
several driving forces rather than a single completely defined problem and its
best solution. Then, given an object of investigation, a descriptive approach
ideally targets the systematization of the problem domain and solution do-
main under consideration as completely as possible – a challenging demand,
admittedly. If it is possible to identify a problem domain, overemphasizing
a single problem is considered an antipattern by the descriptive approach,
though in practice rather concrete problems – accompanied by hype – are
often the subject of major interest. For example, a particular notation like
the XML Query Language is not abstract enough, and a discussion too close
to the syntax would be considered unsatisfactory or too low-level from a de-
scriptive viewpoint. Compare this, for example, with the notion of first-order
logic, which is for mathematicians a class of logics, rather than one particular
syntactical representative.

We have tried to apply this principle, for example, in the definition of
the form-oriented artifacts. First, the identification of the two-staged interac-
tion paradigm, as well as the notions of the form-oriented information system
model and the user message system model are considered the real contribu-
tions of form-oriented analysis. Though very important, the several concrete
proposed diagrams, i.e., the formchart, the form storyboard, the page diagram
etc., are considered secondary concepts. From the viewpoint of descriptiveness,
form-oriented analysis should not be used to restrict the modeler. If desired,
he or she should even be free to design – on the basis of the proposed artifacts
– new artifacts that fit his or her tasks best. We should only try to convince
a developer to learn the details of a complicated artificial language if this lan-
guage has an observational behavior and is capable of completely describing
the required product.

Quality of Models

It is sometimes said that abstraction is the core characteristic of modeling. In
this context abstraction is explained as the omission of details. However, this
is an unsatisfactory explanation that needs elaboration – in many cases it just
misses the point. For example, a mathematical model of an airplane abstracts



9 A Descriptive Approach 167

from its internals, i.e., the seats, the coffee machine, and even its engine. The
mathematical model may allow to calculate the flight characteristics of the
airplane. However, this is really not due to the omission of the details of the
internals, it is due to the mapping of the airplane’s basic characteristics into
an appropriate algebra. This means that modeling is sometimes not in the first
place abstraction but targeted translation. The mentioned details are not on a
finer granularity in this case, but without relevance to the problem. Consider
a scaled wooden model of the airplane. Is the different size an omitted detail
or is it a translation into a different medium? Assume we would only model
the wing, be it as a mathematical or scaled down physical model, because, say,
only the wing matters for some questions, e.g., the produced lift. Would we
call it still a model of an airplane? We loosely identify the following different
kinds of models – the list is not comprehensive:

• Specifying models. Models representing the result of requirements elicita-
tion: amortization plans, building plans, class diagrams, formcharts.

• Insight models. Informal models encapsulating system theories that can-
not, at least yet, be otherwise expressed formally:
– Lasswell’s formula of mass communication [193]: “Who says what in

which channel to whom with what effect?”
– Brook’s law [32]: “Adding manpower to a late software project makes

it later.”
• Statistical models. A survey is a model of the population: measures on the

random sample, e.g., the arithmetic mean, serve as estimators for popula-
tion parameters, in the example the population mean.

• Simulation models. Models you can calculate with in order to predict sys-
tem characterics: Monte Carlo simulation, linear programming, Markov
chains, queuing theory, free-body diagrams, fluid dynamics.

Software modeling is on the level of specifying models. Software models are
models of the software, since the software is the specified object. Prominent
software metrics like COCOMO (Constructive Cost Model) [27] and FPA
(Function Point Analysis) [159, 183] lie in a gray area somewhere between
insight models and simulation models.

Software Engineering Knowledge

A core asset of software engineering organizations is knowledge [101]. This is
true not only for software engineering organizations but for engineering orga-
nizations in general. The knowledge of an engineering organization is a body of
distributed individual know-how. But organizational knowledge has another
very important aspect that is a dynamic aspect: organizational knowledge is
a permanent process that is kept alive by social interaction. Knowledge is
communicated between individuals, some individuals are learning, others are
teaching. This means engineering organizations are learning organizations,



168 9 A Descriptive Approach

even without the need for adaptation to a changing environment. Traditional
learning in engineering organizations has two main characteristics:

• ad hoc word-of-mouth;
• hierarchical tendency.

The vast majority of knowledge is communicated ad hoc word-of-mouth.
Ad hoc means that the knowledge is transferred on demand whenever it is
needed to get a given task done in the midst of a running project. Modern
knowledge management approaches make concrete proposals on how to over-
come this state of learning in action. But for some concepts a word-of-mouth
knowledge transfer may be the significantly most efficient way. Consequen-
tially, an ad hoc word-of-mouth knowledge transfer is sometimes deliberately
chosen, i.e., it is not in place just because of a lack of maturity. It is more
challenging to characterize the conceptual level needed to make knowledge
permanent and communicable than to propose document file formats and
process formats for such knowledge transfer. Despite systematic knowledge
offensives like the SWEBOK [3] guide to the software engineering body of
knowledge or the Software Technology Review [115], it cannot be neglected
that important areas of software engineering, like software/system architec-
ture or software/system performance are still far from a systematic under-
standing, and that existing know-how in these areas is still not amenable to
systematization.

9.1 Descriptiveness, Prescriptiveness, and the Software
Process

As a starting point for this discussion, consider the following quote from Win-
ston W. Royce, in the introduction of his seminal paper [266]:

I am going to describe my personal views about manag-
ing software development. I have had various assignments
during the past nine years, mostly concerned with the de-
velopment of software packages for spacecraft mission plan-
ning, commanding and post-flight analysis. In these assign-
ments I have experienced different degrees of success with
respect to arriving at an operational state, on-time, and
within costs. I have become prejudiced by my experiences
and I am going to relate some of these prejudices in this
presentation.

A software process can be intended to be descriptive or prescriptive. A
software process can actually be used in a descriptive or prescriptive man-
ner in a concrete software project. Consider a purely stagewise software pro-
cess model [21]. Such a stagewise software process model defines the software



9.1 Descriptiveness, Prescriptiveness, and the Software Process 169

project as a sequence of phases, i.e., the process model does not encompass
notions like iteration or preliminary program design. Applying this stagewise
process model naively to a software project would mean: it is forbidden to do
any design during the analysis phase; it is forbidden to do any coding during
the design or analysis phase. Such a process can indeed be sensible, e.g., if
the process captures special knowledge about a repeatable project in a con-
crete application domain. However, in general a project managed in such a
strict stagewise way can hardly be successful, because in general there is a
need for early design and early coding accompanying other activities. But the
stagewise process model is not a hypothetical process; it is used successfully
in everyday software projects. How is this possible? Because it is not used in
a prescriptive manner. It is used rather as the project manager’s viewpoint on
the project in these cases; it is simply not understood as a device to reduce
the developer’s activities. However, it is used to control the activities: the end
of the phases are milestones that represent the important project estimation
and planning efforts.

If a stagewise model is applied successfully, it allows developers to do things
differently as long as the milestones are fulfilled: of course the developers are
allowed to consider design and to code early on, if they feel that it is neces-
sary to improve the quality of the product or to speed up the project. Now,
the project management might want to take control of the observed proven
activities in a project, in order to exploit best practices and to avoid common
errors. For this reason the project management will refine the process model.
Now the delivery of product portions at fixed dates is negotiated between the
project management and the developers, as is the compliance to work pat-
terns. The usage of a refined process model only makes sense if the practices
contained are actually employed, i.e., if their accordance is controlled.

However, even with a refined process model it would be wrong to prevent
developers doing things differently if necessary. The project management that
might want to take control of all activities in a software project may ends up
in planning tasks with a granularity of an hour. In the resulting process there
is no longer any space for using ones own initiative any more and the process
has become prescriptive again. We use the term micro management for this.

A software process can be intended to be descriptive or prescriptive. A
descriptive software process encapsulates observations about practices that
worked. A truly descriptive software process is really a software process model.
A prescriptive software process is designed from scratch to be used as a nor-
mative reference in a software project. Both a descriptive and a prescriptive
software process can be used in either a descriptive or prescriptive way. A
descriptive model should not be used without need in a prescriptive manner.

Using a process model as a normative reference makes sense for such pre-
scriptive processes that are accompanied by an assessment model and avail-
able assessment mechanism. This is true for the Capability Maturity Model
(CMM) [244, 245] and ISO 9001 [164, 166, 243] as well as for the IT In-
frastructure Library (ITIL) [44, 239] – to give an example from the domain



170 9 A Descriptive Approach

of IT service management. It is possible to get a judgment from a certified
consultant that states if a concrete process is in accordance with the defined
practices. We call such process models employable process models.

Batteries not included : without an assessment mechanism it is hard for
project managers to decide if their project really follows a given process. Still,
in our opinion a merely prescriptive process can be exploited as a knowledge
base of good practices. But care should be taken as there is another source
for learning about good practices: a competitor’s successful project [311]. In
opposition to verbose process models, strategic benchmarking is really used
in practice. It has to be noted that the introduction of a new process model
sometimes actually does not have the purpose to improve process quality but
to take control of an otherwise rather chaotic process.

9.2 Metaphor A Posteriori

Worse than prejudices that are the result of project experience – see the
quotation at the beginning of Sect. 9.1 – are prejudices that are not at all the
result of experience.

In the discipline of software development metaphors are pervasive: engi-
neering, architecture, design, objects, agents, actors, contracts, services, desk-
tops. The metaphors used in software development are proportional analogies:
the application of the name of one thing to another is based on proportion [13].
A metaphor can be a brilliant learning device [14]:

Accordingly, it is metaphor that is in the highest degree in-
structive. It follows, then, that for style and reasoning alike,
that in order to be lively they must give us rapid informa-
tion. What we like are those that convey information as fast
as they are stated – so long as we did not have the knowl-
edge in advance – or that our minds lag only a little behind.
With the latter two kinds there is some process of learning.

However, sometimes metaphors are not used merely as cognitive devices.
Sometimes a metaphor is used as the justification, driving force, and – last
but not least – as the benchmark of a whole scientific community or sub-
community.

Metaphors are used in poetry [13] and rhetoric [14]. Using metaphors in
systematic science is risky. Sometimes a metaphor is more invented than con-
structed. Sometimes a metaphor is much too plausible. Sometimes the propor-
tion established by a metaphor is too weak: the two related things are only
loosely coupled by the metaphor. An example for a metaphor that is both
rather invented and too weak is the rhapsodic reference of the design patterns
community to the architecture pattern language of Christopher Alexander [6].
We quote from Christopher Alexander’s keynote speech at the OOPSLA con-
ference in 1996 [7]:



9.2 Metaphor A Posteriori 171

“Now – my understanding of what you are doing with pat-
terns...It is a kind of neat format and this is fine. The pat-
tern language that we began did have other features, and I
don’t know whether those have translated into your disci-
pline. I mean there was a root behind the whole thing – a
continuous mode of preoccupation with under what circum-
stances is the environment good. In our field that means
something.”

Actually the design patterns approach has been partly misleading. Basi-
cally design patterns target software maintainability and reusability by foster-
ing high cohesion and low coupling. The problem is that the allowed solution
domain is narrowed to the world of mere software components. In practice, de-
sign activity is different. Design targets the solution of a lot of non-functional
system requirements like performance, scalability, system maintainability, se-
curity and so on. Subject to design activity are systems consisting of hardware
and deployed software. This leads directly to the architecture metaphor of
software engineering in general. It is sometimes said that the software system
designer crafts a system blueprint, and that therefore software system de-
signers correspond to architects, because architects craft building plans. We
wonder if the latter is true. What is actually the task of an architect? What
is the task of a civil engineer and what is the task of a structural engineer?
Is the proper task of an architect – compared with software development –
rather similar to requirements elicitation than to system design? We do not
want delve into this topic, this means we do not want to improve or refine the
software architecture metaphor. We just want to point out its weakness.

Similarly, we often observe that a justification for a concrete software tech-
nology is plausible at first sight but is actually spurious. We provide a common
misconception about LDAP as a concrete example. The plausible motivation
for why the usage of Lightweight Directory Access Protocol (LDAP) should
bring the added value is consolidation of business data, derived from the X.500
standard. But it is only a vision, and for this envisioned application LDAP has
no unique selling points above other technologies, instead it has clear draw-
backs, e.g., no relational query language. However, one important situation
in which the decision to use LDAP is made is when choosing LDAP as an
alternative to NIS+, because LDAP is compatible with SSL. The decision is
made by technical staff, and the integrated data are account metadata. This
decision is based on a hard reason, a technical feature missing in alternative
technologies. LDAP is also used as a naming service for configuration data.
Even if there are projects that use LDAP for the consolidation of business
data, it is not clear whether in these cases the choice is good.

The origins of an exaggerated claim are not always as easy to detect. If
the origin of a concept is industry, a claim sometimes stems from a market-
ing strategy. If the origin of a concept is academia, a claim sometimes stems
from a silver bullet [33] vision. Invalid claims lead to misconceptions. A mis-



172 9 A Descriptive Approach

conception has its impact. In industry a misconception is rather immediately
observable: project delay. In academia the misconception has rather longitu-
dinal implications: (i) job transition traumas with respect to education, and
(ii) starvation of scientific subcommunities with respect to research.

9.3 On Desktop Metaphors

Desktop metaphors do not necessarily support ownership for the user, they
rather provide a virtual world for the user – under ownership of work prod-
ucts, in our case information, we understand the idea that the user is in
charge of manipulating the work products freely. It is certainly no exaggera-
tion to say that metaphor-heavy approaches, involving animated and talking
cartoons [221], bring applications a step nearer to computer games. And com-
puter games are a proof by example that non-modality does not at all imply
ownership or empowerment. Indeed computer games have gone a considerable
way towards non-modality of their interfaces, expressing options by physical
or behavioral metaphors like grabbing things in three-dimensional space etc.
Yet the essence of the game is, of course, that the user is nevertheless chal-
lenged by the virtual environment. Some metaphor-driven office tools are no
less challenging to the user than these games.

At this point we want to anticipate our discussion about an integrated
source code model in Chap. 12 and to state our opinion that the use of physical
metaphors in professional programming languages does appear implausible.
Metaphors originally targeted the computer illiterate. A programmer using a
professional programming language should be assumed to be a power user.
The power user needs semantic transparency as is offered by ownership of
information. Catchy phrases covering some of these aspects might be:

• The power user does not need metaphors.
• The power user needs ownership of his or her work products.

We try to empower the reader by providing an ownership-oriented para-
digm here, and we do this with the aim that the reader will be better able
to provide appropriate metaphors to the end user. Therefore our approaches
target the power user as the reader, and do not primarily present metaphors.

That said, it may of course be no wonder that the form concept in form-
oriented analysis, which may be conceived as being similar to a metaphor, tries
to reconcile these aspects. The form-oriented metaphor presented in this book
is a metaphor not for the power user, but for the end user, which is supposed
to be rather the reader’s customer. The form-oriented metaphor can indeed
be seen as being especially suited to provide ownership of work products even
to the end user. This is indeed a rare property of a metaphor and makes the
form-oriented metaphor especially valuable.

Drag and drop as such and object orientation as such do not support
ownership of the work product. This difference can be tied to the fact that



9.4 On Real-World Modeling 173

the form-oriented metaphor keeps information as information, adding only
intuition about interaction and persistency questions. The object-oriented
metaphor and the drag and drop metaphor in contrast want to build a vir-
tual world for manipulating information, but rather end up in a mix between
virtual physics and visualized information. This intermediate virtual world is
fully arbitrary and therefore differs in all elaborations of the paradigm. No two
object-oriented paradigms are the same. If it comes to the details, therefore,
the novel user simply cannot rely on intuition, since he or she has no intuition
of this novel environment.

9.4 On Real-World Modeling

Semantic data modeling [49, 152] and object-oriented analysis [279] are cen-
tered around the same basic notion, so-called real-world modeling. The real-
world modeling approach proposes that data modeling should find and de-
scribe real-world objects. It is assumed that this way modeling becomes easier
and leads to more stable models.

In this section we want to argue that a data modeling approach can be
successful without referring to a real-world modeling metaphor. In the first
place we want to pursue a focus shift with respect to data modeling: it is not
the task of data modeling to describe a real-world cutout; it is the task of
data modeling to describe data stored in an information system. A concrete
model does not have to be judged with respect to undisputable facts of the
real world; it must be judged with respect to its appropriateness for the tasks
of the relevant information system.

Software models, if seen as specifying models, are models of the installed
system. The latter was defined as the system running the software. We specify
the functionality of the running software and not, like in object-oriented anal-
ysis, the functions of the things which are managed with the software. The
models which we call in compliance with widespread terminology data models
are at the first instance specifications of a data base as a running system. The
specification can then be seen as specification of the business data, which has
to comply with the data model in order to be processed. The specification is
defined as the specification of the running software in contrast to the software
as pure information. It is a valuable, cost saving fact that we can assess the
compliance of a proposed system before this system is online or even running.
But this fact does not force us to change the definition of specification. The
data model is sometimes part of the running software, like in databases, where
it is often called metadata. Concerning the relation of data and data model,
it is correct to say that the data model is the type specification of the data or,
in a more reductionist terminology, the model is a single compound type, the
type of the data. An analysis model is in our terminology a pure black box
model of the system functionality whereas a design model would be a white
box model.



174 9 A Descriptive Approach

Risks of Real-World Modeling Approaches

A real-world modeling metaphor is not an undisputable precondition for
data modeling. On the contrary, it is necessary to mention that a real-world
metaphor has its risks, too. On the one hand, a data modeler might be con-
fused about the concept of real-world object, resulting in bafflement rather
than guidance. On the other hand, a modeler might find data structures that
are less appropriate for a given task, which is a risk that actually follows the
risk mentioned above.

If a real-world modeling metaphor is to add value to data modeling by
providing guidance for finding appropriate data structures, it has to miti-
gate risks like the ones just mentioned. Therefore elaboration of a real-world
metaphor must face two problems: the problem of conceptual basis, where
it must define and discuss its notion of real world; and the problem of rec-
ommended action, where it must provide detailed explanations on how the
notion of real world can actually be exploited in the everyday tasks of a data
modeler. It is not enough to state that objects are all around and just have
to be picked up. Equally perilously, the elaboration might run into severe dif-
ficulties with respect to the conceptual basis: important theoretical questions
may arise that have been discussed by philosophers for 2300 years. Moreover,
there are several risks with respect to these questions. They simply might not
be recognized. They might be neglected. They might be discussed without
appreciation of their discussion in other disciplines.

Key Argument Against Real-World Modeling Approaches

A real-world modeling approach is an approach that is based on a real-world
modeling statement. A real-world modeling statement claims that the model
captures facts in the real world. The real-world modeling approach is naive
since it does not refer to the well established discussions and critiques concern-
ing the classic correspondence theory of truth [12]. If the real-world modeling
statement is not exploited strictly in the subsequent parts of the method, the
real-world argument has to be considered as flawed, because if the real-world
statement is omitted the subsequent apparatus of the method does in effect
not change.

The real-world modeling approach deals with the question of the rela-
tion between data and the objects described by the data. Note that in form-
oriented analysis this question is finely separated from core parts of the
methodology. The central analysis notion of form-oriented analysis, the form-
oriented user interface, is an information technology concept and deals not
with this question at all. Form-oriented user interface modeling does not nec-
essarily refer to concepts outside the information technology area. The same
is true for the message based network model. The question of how to model
the facts in the so–called real world is in the case of enterprise systems the
question of how to model an enterprise. It is in our view naive if one does



9.5 Visual Modeling De-emphasized 175

not take into account the abundant experience of other scientific communities
regarding the question of business modeling. In today’s working environment
everybody should be a generalist to some extent. Software engineers are of-
ten involved in areas of business modeling due to their general skills. This
does still not mean that these activities belong to the core area of software
development. It only means that even a software developer has to be open for
interdisciplinary topics.

9.5 Visual Modeling De-emphasized

The modeling method presented in this book is not a visual method, because
visual methods do not scale to the system sizes under consideration here. If
you imagine a system consisting of 5000 business classes, you quickly realize
that the whole system cannot be depicted in a single diagram. Decomposition
may appear to be the solution to the problem, but in practice conventional
decomposition mechanisms cannot be used because of the need for readability.
The decomposition has rather to provide a modularization that is adequate
for the functionality under consideration.

Visualization alone yields no abstraction. For example, visualizing classes
using boxes and references between classes using arrows does not yield a more
abstract class model than a textual equivalent in an appropriate program-
ming language that uses curly braces instead of boxes and further attributes
for the references between the classes. Sure, if operations are involved, a visual
class diagram typically omits the operations’ implementation, but such obvi-
ous abstractions are not a unique selling point of visual modeling techniques
or visual modeling tools, they are, for example, also achieved by integrated
development environments, even without roundtrip engineering metaphors in
the latter case. Sure, the notion of class is an abstraction mechanism – a class
abstracts from its many instances – however, the visualization of a class does
not add to the already achieved level of abstraction.

If visualization does not support abstraction, it could still be justified for
cognitive reasons: visual models are (i) easier to grasp, (ii) easier to under-
stand, and (iii) easier to communicate. Although this is not proven, we do not
ignore that, to some extent, especially for small models, this is actually true –
we also use visualizations for our models in this book – see Sect. 5.1.4. It’s sim-
ple: if we feel that a visualization can foster understanding or communication,
we visualize the model, otherwise we don’t. A comparison with mathematical
textbooks might be instructive; there, mathematical objects – graphs, sets,
categories – are visualized by little ad hoc paintings wherever appropriate,
because they often really help understanding, but it is not at all a question
whether these paintings are more than mere learning aids. At the same time,
using a vizualization for a mathematical object does not commit the author
to use visualizations consistently throughout the book for all mathematical
objects of the same kind.



176 9 A Descriptive Approach

• The artifact of interest is always the model, not the diagram that visualizes
the model.

• During modeling, visualization itself must not be subject to investigation.

Actually, visualization has also its risks. First, visualization can raise new,
typically marginal but bothering questions: is it allowed to paint a model el-
ement more than once? Is it allowed to paint crossing arrows? Should class
names have a different font size than attribute names? What is a nice distance
between two classes? What colour for the classes? At least if more than one
developer are involved, visual models demand for style guides in the same way
that textual representations do. Furthermore, as already mentioned, large dia-
grams can quickly become unmanageable. However, the most serious problem
is that visualizing models can be too time-consuming, resulting in an overhead
that can not be justified. Even small visualized models are not automatically
better than their textual counterparts. For example, if a class model has a
critical mass of associations, experience is needed to lay out the diagram in a
clearly arranged manner. A developer might be tempted to spend too much
time laying out or even embellishing diagrams. Among software engineers,
separation of content and layout is a generally accepted best practice, e.g.,
for content management of complex web sites. So, separation of content and
layout should be an issue in modeling, too.

All this said, we argue that the leading paradigm for the management of
the model must be a logical, non-visual method. This distinction also helps in
clarifying that this discussion is about a syntactical issue, i.e., that the visual
concepts under discussion are syntactical notions as well. We will discuss the
problems involved here in Chap. 12 on the integrated source code model. There
we will argue that artifacts can be seen as instances of ordinary data types.
This means we can subsume the concept of syntax under the concept of data
types. This approach shifts the priorities in choosing the syntax of a language,
sometimes also called the metamodel, from visualization concerns to semantic
concerns as well as to questions of modularization and automated processing.
This favors parsimonious syntax models. The visualization of artifacts in this
approach is therefore identified as a purely separate layer above the syntax
model itself. This supports the use of various visualizations, according to the
needs and preferences of the user.

9.6 Artifact Orientation

Software processes comprise artifacts and activities. In software projects the
work is often planned along activities, the project is often tracked along the
improvement of artifacts. Software processes view artifacts as the input and
output of activities, and are described as artifact flows with activities as pro-
cessing elements. A tight coupling of artifacts and activities arises naturally:
there is a need for initial planning and the result of that initial planning is a



9.7 The High-Level Programming Viewpoint 177

stop-or-go report; the final product of a software project is code, and code is
the result of coding. But it is not enough to introduce one producing activity
for each artifact and to describe the software process as a flow of artifacts
through activities. Reality is more complex. Take design as an example. De-
sign is sometimes conceived as a blueprint for subsequent coding. However,
if there is no compelling standard architecture in the project, i.e., if design
alternatives have to be considered, design is rather the quality of software
than its building plan. It is improved throughout the project. This notion of
design is the basis of the design strategy of Extreme Programming [20].

Recognizing problems that arise from a coupling of artifacts and activities
is as old as writing on software processes. Software processes implicitly ad-
dress the decoupling of activities from artifacts, e.g., by iterations [266], spiral
models [26], or two-dimensional process architectures [188]. Artifact orienta-
tion shifts the focus. It stands for explicitly decoupling artifacts from activities
from the outset. Artifact orientation is a descriptive pattern and is indepen-
dent of any software process. Artifact orientation proposes to ask throughout
the project the following question:

How do we improve quantity and quality of the artifacts?

Artifact orientation can be taken as a directive for project planning and
tracking. In the extreme, artifact orientation can be taken as the basis of an
ultra-lightweight method for small projects and small teams:

• Vision. The desired product is described by a vision document.
• Activity follows artifacts. At project start the desired artifacts are defined.

Activities are triggered by the need to improve artifacts.
• Simultaneous improvement. Artifacts of the several artifact sets are im-

proved simultaneously.

The objectives of artifact orientation are similar to the objectives of the
work product orientation of the experience-based approach to object-oriented
software development [153]. This is the software development method of the
IBM Object-Oriented Technology Center, which emphasizes work product
definition in order to ensure that the mutual dependencies of work products,
activities, increments, and project phases are transparent and manageable.

9.7 The High-Level Programming Viewpoint

High-level programming is the encoding of business rules, as they are stated
by the domain-level experts. The programmer’s job is not to change these
business rules according to his or her own intuition. The task of the high-level
programmer is again not to change the business processes until they fit best
to the preferred system. It is rather the task of the business programmer to
implement the demands of the users.



178 9 A Descriptive Approach

We also should not confuse high-level programming with business process
integration (BPI), a totally orthogonal concept. BPI is intended for an orga-
nization in which different parts follow different business processes for similar
tasks. BPI is the endeavor to unify these different rules of procedure, of course
with the aim of creating synergies or enabling rationalization, i.e., cutting the
costs of creating an enterprise information system, or improving the coop-
eration between organizational units. A BPI initiative is intended to result
in a single business model, where previously many different business models
have been in place. BPIs have as a matter of fact mixed results in practice.
However, BPI is totally orthogonal to high-level programming. The notion of
high-level programming describes the way we want to model business logic,
regardless of whether it is integrated across an organization or not. High-
level programming expresses an approach of focusing on the business logic.
In high-level programming we separate the business logic from technical IT
information, like configuration data, technical error messages, host addresses,
etc. In short, business logic is our notion of analysis, separated from design
and implementation. This approach brings added value, regardless of whether
a BPI does not take place, or it has been tried but failed, or it has succeeded.
Especially if the business logic is very complicated – because the organization
is heterogeneous and stays so – the high-level programming approach is more
important than ever.

Of course in our view the introduction of a new IT system is an excellent
point in time to perform a BPI, to justify it within the staff, and to reap high
benefits from it. Nevertheless a decision maker should recognize that it is by
no means a good thing to have essentially a coupling of two major projects,
the change in the IT technology as well as the BPI projects.

We have to be aware, of course, that with the use of an ERP system
there is often the necessity to do exactly this, namely the coupling of the IT
rollout with a BPI. This is of course due to the fact that an ERP is not a
freely programmed system, but a fixed system that allows basically only for
customizations. The use of such a system and the customization is not what
we understand under high-level programming, since it lacks the generality
that we want to see in high-level programming and that we can deliver with
our approach.

Business programming is the generalization of high-level transactional pro-
gramming to general architectures, including desktop databases. It is clear
that there are other paradigms on the same abstraction level as high-level
transactional programming. Our representative of business programming is
high-level programming. The approach of understanding a concept through a
representative is explained in Sect. 14.2.3.

We present business programming as a counterproposal to conceptual
“real-world” modeling. The latter leads to a calculus with peculiarities that
certainly offer no benefit to maintainability; for example, it requires strict
bipartiteness of otherwise extensionally identical concepts, namely relations
and entities. Compare this with the justification of the bipartite modeling



9.7 The High-Level Programming Viewpoint 179

approach in the form-oriented paradigm. In this approach the two concepts,
client page and server action, are different and the bipartiteness is based on
the understanding of the system type.

This becomes clear in the assessment of a given ER diagram. You can assess
its well-formedness which will include a check for bipartiteness. However you
can not check formally whether the relationships are indeed relationships since
this is subject to opinion. Now, perhaps this dilemma is the origin of the claim
that the ER diagram expresses undisputable facts. How such a view deals with
the mere existence of higher-order ER diagrams is not clear at all.

We see two important motivations with respect to maintainability, which
are addressed but not fully solved in conceptual modeling languages. In con-
trast, our modeling language and system view are designed as solutions for
these clearly stated maintainability issues of relational database schemata.

One maintainability issue is that the business logic should be as tolerant
as possible to changes in multiplicity of relations. For example, assume an
account currently could have two contact persons, but in future is required to
have only one. Then all old queries should still work, since they should have
worked if by chance every account had only one contact person. Old updates
obviously may not comply, like “insert another contact person”.

The second issue is that the model should allow only consistent updates.
Normalization theory is one operational method for this purpose which does
not argue metaphorically. Normalization theory tries to change the model in
such a way that the generic update commands on tables lead to consistent
state changes. Many proponents of conceptual modeling stress some connec-
tion between conceptual modeling and normalization with statements like:
the canonical database design from an ER diagram is automatically in third
normal form.

Our analysis comes to a different result. We argue that there is a canonical
system model, but it is a de-normalized one. This model is the message model;
it contains only the input messages, their timestamp of execution, and the
output messages. The output messages can be removed if the system model
is made deterministic. Note that in the message model system updates are
possible, although message updates are not possible. The system state is in
fact updated by each input message.

Why do we not stick to the message model; why do we do data modeling?
Something like normalization may be a good candidate. But normalization
is not a goal in itself. In our view, one motivation is to restrict updates to
consistent updates. The system designer wants to deliver a set of consistent
system update operations. He or she wants to avoid update anomalies. Re-
lational normal forms avoid some update anomalies, but the capabilities of
normalization theory are limited to the alternatives which can be gained by
schema evolution, and the focus of normalization theory is narrowed to one pe-
culiar type of constraint, the functional dependency. The generic state change
commands a relational database is supposed to offer are inserts, updates and
deletes. The only generic constraint on the schema, which results in denial



180 9 A Descriptive Approach

of update commands, is the referential integrity: a row with a primary key
which is used elsewhere as a foreign key must not be changed. By the way
some aspects of normalization are strongly intertwined with the concept of
compound keys; in a concept based purely on artificial keys these questions
do not arise.

There is one intuitive operational concept that improves the consistency
of updates, which we call the one place principle: each information unit is
stored in one place only. This is achieved to some extent by normal forms
for relational database schemes. One can argue that this is the most that a
method the normalization theory can achieve. The one place principle cannot
solve every consistency demand. We argue that data modeling together with
constraint writing is the right general framework for achieving the desired
consistency.

This deliberation allows us to give a general and abstract definition of
a normal form for a relational model. A relational model for an application
domain is in normal form if every generic update allowed by the database
is a consistent update, in other words if it makes sense in the business. If a
business model can be brought into normal, form then each information unit
is only stored at one place and can be changed independently from all other
information units. The concept of referential integrity shows that this is not
even possible in data models, which are in normal form.

This however states the problem very clearly. Logically, there are only two
possibilities. On the one hand is a model of the state where each information
unit can be changed independently and still leads to a consistent state. On the
other hand is a model with constraints telling us which updates are possible.
The first case would certainly be a unique model even if we would not say
indisputable. It would achieve full orthogonality. Alas, we at least do no know
how to do it. Hence we need constraints. Type specifications are constraints,
multiplicities are constraints.

9.8 Advanced Systems Modeling Approaches

One has to be aware that the system modeling techniques we have introduced
in this book are designed for project sizes as found in a professional environ-
ment on a reasonably large scale. Such projects can be major strategic ones
for the company involved, and they require a considerable financial invest-
ment, which is expected to deliver return on investment. Furthermore a new
IT project nowadays always has a precursor system at the intended work-
place. And the new IT system often coincides with a change in the way the
users do their business. In other words, the social systems may change as well.
Furthermore the transition to the new system has to be well planned.



9.8 Advanced Systems Modeling Approaches 181

9.8.1 Systems Analysis

Our notion of analysis is dedicated to these necessities, and differs therefore
from other analysis approaches, which focus more on establishing novel on-
tologies. In our view a proper systems analysis has to have the following parts:

• An analysis and description of the existing system. This should of course
be based on the documented rules of procedure of the organization.

• A workload metric.
• A model of the proposed system.
• A feasible plan for the transition between the systems.

Domain experts play a crucial role in the provision of these parts. Note,
further, that our discussion of analysis is tailored to projects for enterprise
systems within an organization. A somewhat different scenario is software
projects for creating off-the-shelf software, e.g., for whole industry sectors.
In the latter case the method works best if the sector has a high degree of
uniformity of processes, e.g., through benchmarking.

Analysis of the Existing System

The systems analyst, who has to provide the analysis of the existing system,
has a crisp and clear first task: to gather all existing documentation of the sys-
tem, and to review it. Documentation does not mean the user manual of an IT
system. It refers to the processes and workflows in the organization which are
most likely documented, since many organizations have undergone streamlin-
ing and re-engineering in the past which aim at clear business processes [269].
The review includes the following tasks: classification of the paradigms of the
documentation, assessment of completeness. The most difficult part is prob-
ably to check whether these processes have indeed been followed. This also
makes clear that the system analyst will easily reach the limits of his or her
resources. The existing systems analysis does not have to mean a rewriting
of the documentation; this may be reserved only to the case where a direct
comparison with the proposed system is needed.

Workload Metric

For finding the appropriate solution for the proposed system, one has to assess
the workload with which the system is confronted. The estimation of future
workload has of course to be provided by the strategy makers who are aware of
the vision for the business, and know on which scenario to base the estimation.

Model of the Proposed System, Benchmarking

In modeling the proposed system again, the systems analyst has a clear and
primary task, which one may rarely find in textbooks on software processes:



182 9 A Descriptive Approach

the central task is industry benchmarking (which is something different from
the notion of benchmarks in performance measurements). The systems analyst
has to look at what others do, what benefits they achieve, how his or her idea
compares with theirs. The proposed system does not really have to have a
novel approach, it should rather follow a proven approach. One can consider
best practices from industry as safe. If one takes a new approach, one should
know exactly why it is going to work, or make appropriate tests.

A Transition Model

The transition model has of course to be interconnected with the planning of
the software development project, e.g with the delivery date. The transition
model must also contain plans for the case of malfunction, e.g., projecting
realistic times for bug fixes. One important part of the transition model is the
plan for when and how the users start working with the new system.

9.8.2 A Game Model for Systems Analysis

In large projects, a thorough planning process should involve intensive testing
and review of the proposed system. This may also include a simulation of the
new system in order to test the appropriateness of the system and to find
loopholes early on. Such a simulation can be more or less automated in itself.

In systems analysis, it is important to be aware that not just the IT systems
are relevant. The social and technical systems are important for a thorough
understanding of the problem domain as well. Therefore a thorough analysis
must also model the social and technical systems. We therefore need a model-
ing paradigm for these systems, and we need an easy to understand metaphor,
which helps us to verify the appropriateness of our models.

A straightforward approach would be to try to develop a single vocabulary
for socio-technical systems, which seems appropriate, and to define it for all
upcoming projects. However, we will present a more open basic approach,
which may be even more convincing with respect to its appropriateness.

We look for a modeling approach for systems analysis which empowers a
team of systems analysts to effectively perform the following activities:

• Discussion of a proposed model.
• Discussion of a certain example scenario, and examination of what may

happen according to the model.
• Reaching agreement on whether certain developments are possible or not

according to the model.

The basic approach, which we follow in order to ensure the principal pos-
sibility of such activities of the modeling team, is a kind of game-theoretic
approach. A given proposed model can be taken by a systems analyst. We
could envisage this analyst as arguing to his or her colleagues: “Look what



9.8 Advanced Systems Modeling Approaches 183

could happen if truck A arrives before the processing order X is in place.” This
could lead to the recognition that the model does allow for a basically impos-
sible event, thus showing that the model has to be changed. But it could also
show that a certain feature of the IT system, being part of the model, does
not in any cases fulfill the purpose it is supposed to fulfill, thus giving rise to
a change in the IT system. This system modeling approach is therefore quite
a powerful tool, which is actually even suitable for requirements elicitation,
as we will see in due course.

9.8.3 Non-functional and Embedding Specifications

Non-functional specifications certainly have from a modeler’s viewpoint their
own troublesome features. The question of a suitable formalism is especially
difficult for non-functional specifications. We want to discuss non-functional
specifications in the context of the so-called embedding specifications, since
there are some natural relationships. Some non-functional specifications, such
as privacy, have a close correlation to embedding specifications. It could per-
haps be overstated to say that embedding specifications are all that is needed
to define privacy, but certainly this connection should be kept in mind. It
seems to be say at least something important about the nature of such non-
functional requirements.

Embedding specifications take up the reflections on software specification
as the specification of a system running the software in question. An embed-
ding specification defines how an information system specification has to be
read as a factual system specification. It fixes the abstract system at least
qualitatively in space and time. An abstract system specification without an
embedding specification is just a mathematical object. One can even say that
an abstract system specification cannot have a state at all, even such a thing
as a finite automaton. It can only have a structure, which reminds us of a
state-based system, or which is traditionally read as a specification of a state-
based system, but usually it is just some mathematical set. Only by using
an embedding specification does this state-like something indeed become a
state. The embedding specification ties the software system, which up to this
point is just a definition, to a system installation. The space in which the
embedding takes place is more a social than a physical space. The embedding
places systems in organizations and gives access to persons. Concerning the
notion of time, however, this embedding can be seen as being very physical.
The embedding with respect to time mostly takes place in the same way, since
in complex system models like the data modeling we have introduced, it may
be hard to imagine how to interpret the model differently than in the usual
way. This can, however, be treacherous. In using this embedding, the model
dimension which created the state that changes through time gets its intended
semantics. The embedding specification is related to the territoriality of en-
terprise systems. One standard embedded specification states, that there is
only one installation of an enterprise system for a certain organization.



184 9 A Descriptive Approach

The distinction between type and instance remains meaningful: a single
installation is an instance, but many installations can belong to the same
type. These considerations are crucial for a deeper understanding of enter-
prise applications, because installations of enterprise systems are by far more
important notions than installations of many other software products like, for
example, office applications. The form-oriented interface itself is a type spec-
ification; it specifies a terminal session. Each enterprise system installation
will of course have numerous terminal sessions during its lifetime.

The remarkable connection between non-functional requirements and em-
bedding specification is the following. A straightforward embedding specifica-
tion of an enterprise system automatically states the maximal non-functional
requirements. So just stating that a system according to a typical specifica-
tion is supposed to be installed at a certain place means literally that there
is a perfect, faultless system. In fact it states unrealistically high require-
ments. A simple embedding specification requires service without downtime,
absolute privacy, failure-free infinite persistency. This means that, from the
standpoint of an embedded system specification, non-functional requirements
are not stated as demands, but as relaxations. We have to specify that the
specification is not supposed to hold 100%. Similar aspects have been encoun-
tered in the case of transactions. There we have seen that naive semantics
produce a specification which demands the highest isolation level. And with
respect to distributed transactions, we have seen that there is no problem at
all in specifying a global transactional network with the highest isolation level;
in fact there is almost nothing to explain. The problem is to implement it!

Relaxations can be specified quantitatively, qualitatively, or prescriptively.
The isolation level specification is a qualitative specification. A specification
of mean time between failures is a quantitative specification. The demand to
use SSL is a prescriptive specification, since it does not state the intended
goal, but the solution. This is a relaxation in the sense that it concedes that –
absolute security being impossible – SSL is seen as fully sufficient. Quantita-
tive relaxations are necessary for professional high-profile projects, but sadly
enough they remain often restricted to them. In some regards quantitative
relaxations are difficult to achieve.



Part II

Tool Support



10

Forward Engineering and Reverse Engineering

In this chapter we decribe a prototypical forward and reverse engineering
tool suite – see Fig. 10.1. The tool suite exemplifies how the form-oriented
approach to information systems can be exploited in model-based develop-
ment. Angie [100] is a textual format for formcharts with message types and
a forward engineering tool. JSPick [94] is tool for revovering models from the
source code, whereas Revangie [103, 102] is a tool that recovers a model by
monitoring a system. The models recovered from Angie are intended to be
used by a model-based load test tool.

Angie

Angie
Generator

Load Angie

Java
Server Pages

JSPick
Model Recovery

Revangie
Model Recovery

Angil
Load Test

Click-Dummy
Prototype

Web Presentation Layer

Load Test
Report

Angil
OLAP

Java
Server Pages

Fig. 10.1. The Angie language related tool suite



188 10 Forward Engineering and Reverse Engineering

10.1 Forward Engineering

In this section we describe the language and tool Angie for the type-safe
specification of web presentation layers and the subsequent generation of an
executable interface prototype. A textual description of a web-based dialogue
can be directly expressed in the proposed language and is then automatically
mapped onto a system structure in compliance with currently discussed web
design patterns like the Model 2 architecture. The Angie tool bridges between
the specification and implementation level. The proposed language directly
supports the system metaphor of form-oriented analysis, namely the system
model as a bipartite state machine.

Web interaction based on HTML forms is untyped. In many common web
presentation frameworks this leaves the programmer with a considerable num-
ber of tasks like type conversion, which are moreover error prone. Angie frees
the programmer from these tasks by introducing a clean abstraction layer and
offering a generator tool based on this abstraction layer. Moreover, Angie sup-
ports the recommended Model 2 architecture. For this purpose the language
Angie uses the system metaphor of form-oriented analysis, in which the sys-
tem is modeled as a bipartite state machine. A description of a web interface
in the Angie language is independent of particular target languages or even
particular frameworks for this architecture. Angie rather focuses on the prin-
ciples of the HTML interaction model itself, not the platform for generating
dynamic HTML. An Angie document allows the generation of web presenta-
tion layers for arbitrary platforms, depending on the available code generators
for the Angie compiler. A Java generator is provided. The reverse engineering
tool JSPick described in Sect. 10.2 can be considered as the counterpart of
Angie, because JSPick takes a JSP-based actual system and retrieves a typed
specification.

10.1.1 Shortcomings of Common Web Presentation Frameworks

The advantages of Angie are best appreciated from the standpoint of the
design phase. We describe why the working developer of Servlet-based web
interfaces can gain advantages for everyday problems by using Angie.

The HTML form standard offers an untyped, text-based remote call mech-
anism, which is used as the standard parameter passing mechanism for dy-
namic web sites. This mechanism is commonly, but not quite correctly, referred
to as CGI parameter mechanism. We prefer HTML form parameters in the
following as precise term for those parameters. The mechanism can be used in
HTTP links as well. Hence the user of a HTTP dialogue can be viewed as in-
voking methods on the system via the browser. But consider now, for example,
Java Server Pages (JSPs) and Servlets [248]. Servlets and JSPs give access
to HTML form parameter passing through an object-oriented mechanism, yet
still in the style of the original CGI (Common Gateway Interface). Commonly



10.1 Forward Engineering 189

accepted documentation and testing concepts, when used naively in the con-
text of developing a Servlet-based ultra-thin client tier, may consider only the
purely technical HTTP parameters instead of the parameters significant for
business logic. In the formal language called Angie each Servlet or JSP is seen
as a method with the form parameters as parameter list. Such a method is
called a dialogue method. Each result page offers the user the choice between
different calls to dialogue methods as the next step in the dialogue. Dialogue
methods can be called by links or forms. Forms can be seen as editable method
calls offered to the user. Angie allows specifying the links and forms contained
in a page. From each specified method declaration and call the generator will
produce appropriate code templates as described below. The Model 2 archi-
tecture is a recommended good practice for web presentation layer design. A
detailed discussion of the Model 2 architecture can be found in Sect. 11.2.1.
In the Model 2 architecture, the user request is directed to a so-called front
component, which executes business logic. Dependent on the outcome, the
front component redirects the request to other dialogue methods, the result
pages. Note therefore that one JSP will potentially yield as many different
result pages as it has redirect directives.

10.1.2 The Language Angie

The language Angie is a specification language for HTML dialogues. Its type
system and syntax are oriented towards Java. Angie allows the specification
of an HTML dialogue as a textual representation of a message storyboard. A
whole web interface is specified in Angie in a single source file. The Angie com-
piler performs static type checking on this specification and the code generator
generates JSP templates, containing protected regions. The JSP templates can
be completed by inserting custom code into the protected regions. Each di-
alogue method has a fixed parameter set. The method construct in Angie is
again similar to the method syntax in Java. The type checking requires that
the signatures of method definition and invocation is matching, i.e., that the
parameter list matches and that the single parameters have the same type.
We present a simplified Angie syntax in Fig 10.2, which defines a superset of
the Angie language. In the body of Angie’s method construct, the program-
mer has to specify all links and forms which will be offered by the result page
of this method. Since links and forms enable calls of dialogue methods, their
declarations resemble method calls. They start with the keywords link or
form, they get a label, and finally they have a method call syntax. For links,
the actual parameters are names of variables. In form declarations each actual
parameter is a pair of the widget type that will be generated and a variable
name. The values of these variables are used to provide the default values
within the widgets.

link myLabel calls myMethod(myActPar1,..,myActParN)

form myLabel calls myMethod(WIDGET1 myActPar1,..,WIDGETN myActParN)



190 10 Forward Engineering and Reverse Engineering

syntax ::= <LOCATION> <EQUALS> <LOCATOR> methods ( menu )?

methods ::= ( method )*

method ::=

( <ACTION> | <PAGE> )? <IDENTIFIER> <OPEN> parameters <CLOSE>

<CURLYOPEN> ( calls )? <CURLYCLOSE>

parameters ::= ( parameter ( <COMMA> parameter )* )?

parameter ::=

( ( <BOOLEAN> <IDENTIFIER> )

|( ( <INT> | <STRING> )

( ( <ARRAYOPEN> <ARRAYCLOSE> <IDENTIFIER> )

|( <IDENTIFIER> ( <ARRAYOPEN> <ARRAYCLOSE> )? ) ) ) )

calls ::= ( call ( <OR> call )* )

call ::= ( link | form | redirect )

redirect ::=

<REDIRECT> <IDENTIFIER>

<OPEN> actualLinkParameters <CLOSE>

link ::=

<LINK> <IDENTIFIER> <CALLS> <IDENTIFIER>

<OPEN> actualLinkParameters <CLOSE>

actualLinkParameters ::=

( <IDENTIFIER> ( <COMMA> <IDENTIFIER> )* )?

form ::=

<FORM> <IDENTIFIER> <CALLS> <IDENTIFIER>

<OPEN> actualFormParameters <CLOSE>

actualFormParameters ::=

( actualFormParameter ( <COMMA> actualFormParameter )* )?

actualFormParameter ::=

( <TEXT> | <TEXTAREA> | <CHECKBOX> | <RADIO> | <COMBOBOX> |

<MULTIPLELIST> | <HIDDEN> ) <IDENTIFIER>

menu ::=

<MENU> ( <IDENTIFIER> (<COMMA> <IDENTIFIER>)* )?

<CURLYOPEN> calls <CURLYCLOSE>

Fig. 10.2. Grammar of the language Angie

Two-Staged Request Processing

Angie directly supports the system paradigm established in form-oriented
analysis: the typed bipartite state machine. The action and page declarations
in Angie enable a two-staged request processing. Angie offers two method
modifiers, action and page, which qualify the respective method as corre-
sponding to a server action or client page.

The Menu Construct

Angie also supports a menu construct. This construct may contain link and
form declarations, which will be included on every result page of a specified list



10.1 Forward Engineering 191

of page methods. The menu construct is the Angie notation for the concept
of state sets (with respect to client pages), which has been introduced in
Sect. 6.5.1.

Generation of Code

The language Angie serves as a formal specification language, but also as input
to the Angie tool, a type checker and generator. The Angie tool performs the
following static checks:

• It checks whether all calls to methods (in the result pages of other meth-
ods) have correct parameter sets. This is important, especially for forms.
Here the tool checks whether the widgets chosen in each actual parameter
matches the type of the corresponding formal parameter.

• It checks syntactically whether every action calls only page targets via
redirect declarations, and whether every page calls only action targets via
link or form declarations.

For correct input, the Angie generator produces the following output code:

• For each method it produces one JSP with the same name. Within that
JSP it produces code which performs runtime type checking whether the
method is called with the correct parameters, and converts the parameters
to local variables with the same name as the formal parameters in the
Angie file. Subsequently it creates a protected region which can be used
as a method body for the Java code.

• For every link or form declaration in the Angie method body it creates
HTML code, giving a form or link which offers a correct call to the corre-
sponding method. Within that HTML code, the Angie tool again creates
protected regions for each HTML parameter, defining where to insert Java
code which produces actual parameters. Similarly, it creates redirect di-
rectives for the redirect declarations in the method body.

• For every menu declaration, Angie weaves the contained link and form
declarations into the specified page methods.

• The Angie tool produces comments, structuring the generated code.

10.1.3 The Online Bookstore in Angie

We now give Angie code for the running example, the online bookstore. We
only specify a cutout of the system, which is visualized in Fig. 10.3. The menu
construct is used to specify the back link from the login page to the welcome
page.



192 10 Forward Engineering and Reverse Engineering

Login LoginFormWelcome LoginLink
loginlogin

WelcomeLink welcome

Fig. 10.3. Bookstore login capability

page Welcome(String customerName){

link login calls LoginLink()

}

action LoginLink(){

redirect Login(errorMessage,defaultEmail)

}

page Login(String errorMessage, String defaultEmail){

form login calls LoginForm(

TEXTFIELD email,

PASSWORD password

)

}

action LoginForm(

String email,

String password

){

redirect Welcome(customerName)

or redirect Login(errorMessage,defaultEmail)

)

menu Login {

link welcome calls WelcomeLink()

}

action WelcomeLink(){

redirect Welcome(customerName)

}

10.1.4 The Position of Angie Within Related Technologies

In comparison with other tools Angie can be seen to be on the declarative
side, while other tools typically fall on a rather operational side. We can
see that if we compare Angie with web presentation frameworks; Angie does
not prescribe architecture or design, even if it goes very well with concrete
technologies. This is our very aim in making an abstraction; we want to have
added value for the concrete technology, yet we do not want to be tied to
that. The current Angie tool output is consistent with SUNs Model 2 [248] as
a JSP design pattern. Due to the generative approach of the Angie tool it is
however quite possible to support advanced and more flexible system designs
as well.



10.2 Reverse Engineering 193

In comparing tools like Angie one has to be aware of the precise task this
tool is designed for. It has nothing to do with, e.g., web authoring tools, which
are more related to content management systems, another important technol-
ogy class. Such tools typically also achieve a certain abstraction level, but
this targets questions of information modularity, as expressed in description
languages like WebML [45]. It is interesting to compare Angie with interactive
Tools, e.g., Wizards [29] and graphical IDE’s. From the software engineering
standpoint the important advantage of Angie is that you have a formal spec-
ification in form of the Angie source code, while in the case of Wizards you
have only the resulting system. The functionality of Angie is different from
tools like [230], which provide an interconnection between different language
paradigms like HTML and SQL. Angie takes one signature specification and
generates code in the different paradigms, Java and HTML, according to this
signature specification. Angie consequently performs static type checking and
ensures that the resulting system is statically well typed.

10.2 Reverse Engineering

In this section we introduce a notion of design recovery tool for presentation
layers. The concept is described along the lines of the concrete tool JSPick.
JSPick is a reverse engineering tool for JSP-based web presentation layers.
JSPick allows for automatic generation of documentation of the whole system
interface in an easy to read specification language. The section proceeds by
describing how the tool supports the recovering of form types and the re-
covering of page signatures. The formal semantics of the tool based on the
pseudo-evaluation technique are provided in Chap. 15.1.

Consider javadoc, the standard Java documentation tool. Javadoc would
not be applied to the Java Servlets code that is generated by a JSP container.
However, the considerations concerning javadoc foster the understanding of
the JSPick concepts. Javadoc is not suitable for documenting Java Servlets,
because applying javadoc to the customized server script classes leads only to
the documentation of the technical parameters HTTPRequest and HTTPRe-
sponse. The documented technical signatures are not amenable for a applica-
tion of reasonable specification techniques. The interesting parameters, which
are significant for the functional requirements and business logic, namely the
HTML form parameters provided by the forms or links calling the page, can-
not be documented automatically. All this amounts to saying that javadoc is
a pure redocumentation tool in the sense of [50]. The generated code docu-
mentation adds no value to the semantics that can be read directly from the
code, only a visualization is created.

In contrast, JSPick is a design recovery tool in the sense of [50]. JSPick
exploits the NSP concepts (Chap. 11) in order to infer from the code a mean-
ingful documentation at a higher abstraction level. JSPick extracts from a
system interface all pages with their signatures together with the contained



194 10 Forward Engineering and Reverse Engineering

links and forms. JSPick generates a GUI browser for a given system. With
that browser the developer can examine source code, abstract syntax trees,
type information, warnings, and the linkage structure of the system under
consideration from several different viewpoints.

The tool presented in [144, 143, 142] analyses source code and pages of
a web application and generates an architecture diagram that visualizes the
interactions between static pages, active ASP or JSP pages and other software
components by arrows. The same support is offered by the tool WARE (Web
Application Reverse Engineering) [199] for ASP- and PHP- based systems. A
technique for recovering navigational structure and a conceptual model from
a web application without tool support is described in [11]. An example of a
tool that can track the change history of a web site is given in [34].

10.2.1 Recovering Form Types

As a basic feature JSPick encounters violations of the combined Java/XHTML
block structure: Java and the markup language block structure should be
compatible as described in Sect. 15.2.4.

For every form information about the dynamically provided form input
capabilities is created. The information inferred with respect to a given form
is called its form type in the sequel. Consider the JSP example page in List-
ing 10.1. The most succinct JSPick presentation of the web signature and the
form type that is extracted from the code in Listing 10.1 is the following:

jsp examplePage.jsp( []x, z, y){

form calls http://www.foo.net/targetedPage.jsp(

TEXT a, TEXT[] b, TEXT[] c, TEXT[] d, TEXT e, RADIO f,

RADIO[] g, SELECT h, SELECT[] i, HIDDEN j, VARIOUS k

);

}

For a form each targeted formal parameter is given. We use the following
terminology in the context of JSP: (i) a formal parameter is a name that is
requested in a server page, and (ii) a formal parameter targeted by a form is the
name-attribute of a possibly generated control contained in the form. If it is
sure that always exactly one control is generated for a certain parameter then
it is given as a single parameter. Otherwise it is given as an array parameter.

Note that a collection of radio buttons is one single control: a set of ra-
dio buttons offers the user one capability to select one single data item and
is therefore conceptually equal to one single select menu. A multiple select
menu is considered as a collection of controls. A multiple select menu is con-
ceptually equal to a set of check boxes: each of its options offers the user the
capability to select or deselect a data item independently of the other menu
options. The conceptual view of radio buttons and multiple select menus is
summarized again in the informal equation (10.1).



10.2 Reverse Engineering 195

mulitple radio buttons
≡ one single select menu
�≡ one multiple select menu
≡ multiple check boxes

(10.1)

As further information the control kind of each targeted formal parameter
is given. If it is possible that a parameter is targeted by different kinds of
controls it is given the various-control , which is a pseudo-control that has
been introduced merely for this purpose.

Listing 10.1 Java Server Pages: example input to the JSPick CASE tool

01 <html>

02 <head><title>Example Page</title></head>

03 <body>

04 <form action="http://www.foo.net/targetedPage.jsp"

05 method="get">

06 <input type="text" name="a">

07 <input type="text" name="b">

08 <input type="text" name="b"><%

09 for (i=0;i<2;i++){%> <input type="text" name="c"><%}

10 if (cond){%> <input type="text" name="d"> <%}

11 if (cond){%> <input type="text" name="e"> <%}

12 else { if (cond){%> <input type="text" name="e"> <%}

13 else {%> <input type="text" name="e"> <%}

14 }%>

15 <input type="radio" name="f">

16 <input type="radio" name="f"><%

17 for (i=0;i<2;i++){%> <input type="radio" name="f"><%}

18 if (cond){%> <input type="radio" name="g"> <%}%>

19 <select name="h"><option>A<option>B</select>

20 <select multiple name="i"><option>A<option>B</select>

21 <input type="hidden" name="j"><%

22 if (cond){%>

23 <input type="radio" name="k">

24 <input type="radio" name="k"><%

25 } else {%>

26 <select name="k"><option>A<option>B</select><%

27 }%>

28 </form><%

29 v1=request.getParameterValues("x");

30 v2=request.getParameter("y");

31 v3=request.getParameterValues("z");

32 if (cond) { v4=request.getParameter("z"); }

33 %>

34 </body>

35 </html>



196 10 Forward Engineering and Reverse Engineering

Summing up, a form type maps each formal parameter targeted by the form
to a type consisting of a control kind and a possibly array annotation. The
presented form types already provide the developer with valuable debugging
information. The second kind of information is extracted page signatures.

10.2.2 Recovering Page Signatures

The JSPick page signatures are crucially motivated by an insight into the
specific interplay between HTML/XHTML forms and JSPs: the method
request.getParameter of the request-object should only be used for a parame-
ter if it is sure that the parameter has at most one value. This is clearly stated
in the online API documentation of the Java Servlet technology 2.2. The rea-
son for this is obvious: the getParameter-method only returns the first value
if it is applied to a string parameter [76]. More seriously in the older Java
Servlet [75] version 2.1 this behavior is just proposed and the return value has
been implementation dependent in such cases. Formulated in another way, if
a parameter might have more than one value the getParameterValues-method
should be used. This guideline motivates the way JSPick infers the web sig-
nature. If in a page a parameter is only requested by a getParameterValues-
method, it is a formal array parameter. If in a page a parameter is possibly
requested by a getParameter-method, it is a formal single parameter. Based on
inferred form types and web signatures, JSPick can detect potential violations
of the guideline described above and can generate an appropriate warning.

The information extracted by JSPick can be analyzed with respect to sev-
eral classes of potential sources of error. For example, it is easy to implement
reports on the following non-mutual exclusive indicators for a flawed design:

• A parameter is requested by a getParameter-method, but it is not provided
by a targeting form.

• A parameter is provided by a form, but it is not requested in the targeted
JSP anywhere.

• Forms targeting the same JSP may target different formal parameters.
• A form targets a non-existing form.
• A parameter may be requested by both a getParameter-method and a

getParameterValues-method.
• A formal parameter that is targeted by a password control may be targeted

by another non-password control.

10.3 Source-Code-Opaque Reverse Engineering

This section describes source-code-independent reverse engineering of dy-
namic web sites. The tool Revangie builds a form-oriented analysis model
solely from the usage of a web application. The recovered models can be,
for example, exploited for the purpose of requirements engineering and load



10.3 Source-Code-Opaque Reverse Engineering 197

test development. Revangie can explore a given web application fully auto-
matically or can passively record its usages. The collected data, i.e., data
about screens, server-side programs, and system responsiveness, are analyzed
in order to build a user interface model. We present several adequate screen
classifications, which are utilized to yield significant models.

Revangie is a tool that is able to recover the model of a dynamic web
interface without looking at the source code. Revangie recovers models inde-
pendent of source code because of the manifold of languages, platforms and
architectures a dynamic web site can be implemented in. The source-code-
independent approach is a straightforward one, because it is much easier to
analyze HTML code than the generating code. It is an essential claim that the
analysis of the generated HTML is sufficient to recover sophisticated models.
It is not only easier to analyze HTML code than the generating code, but
more convenient too, because the HTML code can be explored through the
single point of access of an HTTP port, whereas the generating code can have
a complex deployment structure. In the case that the source code is inac-
cessible, analysis must be source-code-independent anyway, as is the case in
typical product benchmarking efforts.

We explain the motivation for Revangie by describing its role in the Angie
tool suite. Please consider Fig. 10.1. Revangie is used to recover form-oriented
models from a dynamic web site. The textual description of this model in
the language Angie can be subsequently used for forward engineering of click
dummies, as they are conveniently used for requirements engineering, or cus-
tomizable systems, which can help in migrating to model-driven architecture.
In addition to this, Revangie can collect data about user behavior that can
be used for load testing. It is further work to provide the load test tool Angil
that simulates real users on the basis of an annotated version of the Angie
language.

Revangie automatically classifies screens to pages in order to construct
adequate models. Different equivalence relations can be used for screen classi-
fication – see Fig. 10.4. Figure 10.4 uses a modified formchart diagram, where
single, completely unclassified screens are drawn instead of client pages. The
equivalence relations together with the subset relationship form a lattice.

• Trivial identity is the coarsest possible equivalence relation. All screens are
equivalent. It is practically unimportant, but forms the top (�) element
of our lattice.

• Screen identity is the finest possible equivalence relation for screen classi-
fication and consequently forms the bottom (⊥) element. Each screen that
is received by a web client gets its own page, even when two screens have
the same HTML code.

• Textual identity groups screens with the same HTML code into the same
page.

• Source identity groups screens into the same page that were generated by
the same action.



198 10 Forward Engineering and Reverse Engineering

• Targets identity groups screens with identical targets signature, i.e., the
same set of server action signatures targeted by a screen. Targets identity
can be coarsened to form targets identity by excluding the signatures of
links from the targets signature, or orthogonally, coarsened to internal
targets identity by excluding forms and links that target external actions,
like links to other web sites.

• Title identity groups screens with identical HTML titles.
• Pattern identity groups screens that match a user-defined pattern. This

may be a textual pattern, a purely syntactical pattern or a mixture of
both; regular or, at most, context-free patterns are usually sufficient.

• A conjunction A ∧ B groups those screens that are equivalent by both A
and B, yielding a refinement of both A and B.

• A disjunction A ∨ B groups those screens that are equivalent by A or B,
yielding a coarsening of both A and B.

ACME events

ACME bargains

ACME Specials
1

ACME Specials
2

home

ACME Welcome
3

ACME Welcome
4

view products

Hardware
5

Drugs
6

Food
7

identity screen classification
title 1-2 3-4 5 6 7 8
source 1 2 3-4 5-6-7 8
targets 1-2 3-4 5-6 7-8
source title 1-2 3-4 5-6-7 8
targets title 1-2 3-4 5-6 7-8
source targets 1-2 3-4 5-6-7-8
source title 1 2 3-4 5 6 7 8
targets title 1-2 3-4 5 6 7 8
source targets 1 2 3-4 5-6 7 8

non-food food

Goodies
8

view goodies

Fig. 10.4. Revangie: example screen classifications



11

Typed Server Pages

In this chapter a strongly typed server pages technology is proposed. Server
pages technology is a state of the art in the field of web technology. The pro-
posed technology is seamlessly integrated with form-oriented analysis. There
exist canonical mappings from formcharts to the proposed technology. The
core type system of the technology is given as a convenient Per Martin-
Löf style type system in Chap. 15. This enables precise reasoning about the
concepts introduced. The formal semantic basis provided for type safety is
also a contribution to form-oriented analysis in general, because it renders
more precisely the interplay between server actions and client pages of a sub-
mit/response style system.

Web applications are ubiquitous. For every company that wants to stay
competitive it is not a question whether to deploy Internet technology, but how
to deploy it [252]. Highly skilled workers are needed to operate e-commerce
technology [315]; indeed a research study [124] conducted by the Gartner
Group has shown that more than three-quarters of the cost of building an e-
commerce site is labor-related. Consequently web technology is worth looking
at.

Ultra-thin client based enterprise applications benefit from scalability and
maintainability. Server pages technologies are widely used in the implementa-
tion of ultra-thin client applications. A drwaback of these technologies is that
the low-level CGI programming model [57] shines through, especially when
user data are gathered in a completely untyped manner. In this chapter a
strongly typed server pages technology is designed from scratch. The contri-
butions target the stability and reusability of server-pages-based systems. The
findings are programming language independent. The results are formalized.
The following concepts are combined:

• Parameterized server pages. A server page possesses a specified signature
that consists of formal parameters, which are native typed with respect to
the type system of a high-level programming language.



200 11 Typed Server Pages

• Support for complex types in writing forms. New structured tags are of-
fered for gathering arrays and objects of user-defined types.

• Exchanging objects across the web user agent. Server-side programmed
objects may be actual form parameters and therefore passed to client pages
and back, either as messages or virtually as objects.

• Higher-order server pages. Server pages may be actual form parameters.
• Statically ensured client page type safety. The type correct interplay of dy-

namically generated forms and targeted server pages is checked at compile-
time.

• Statically ensured client page description safety. It is checked at compile-
time if the generated page descriptions are always valid with respect to a
defined client page description language.

• No unresolved links. It is statically ensured that all generated forms and
links point to existing targets within the system dialogue.

• Active controls. NSP direct input controls are dynamically type-safe; that
is, dynamic type checks with respect to data entered by the user are stat-
ically ensured. Equally checks with respect to required data are statically
ensured.

The proposed server pages technology NSP (Next Server Pages) both over-
comes drawbacks of current CGI-based technologies and helps the developer
immediately to code cleaner, reusable, and more stable systems. The NSP
approach is oriented towards improved web application architecture and im-
proved development techniques from the outset:

• Enabling technology for improved web-based application architecture and
design. In NSP a server-side call to a server page is designed as a
parameter-passing procedure call, too. This enables functional decomposi-
tion of server pages and therefore helps decouple architectural issues and
design patterns.

• Reverse engineering. The NSP concepts are exploited by the fully imple-
mented reverse engineering tool JSPick, which recovers web signatures and
form types from JSP-based presentation layers. The formal semantics of
the tool are given in pseudo-evaluation style.

11.1 Type-Safe Interplay of Forms and Scripts

The above concepts aim to overcome certain drawbacks of CGI-based tech-
nologies, which today provide the single most important means to build pre-
sentation layers of web-based systems, as explained in the sequel. A web-based
system consists of a set of server-side scripts. A script is a code unit that is
called across the Net by the user by submitting a form or selecting a link.
On behalf of this the script triggers business logic and eventually produces a
client page that is sent back to the user. The client page is coded in the client



11.1 Type-Safe Interplay of Forms and Scripts 201

code unit 
that produces

page descriptions
(e.g. server page)

code unit 
that produces

page descriptions
(e.g. server page)

code unit 
that produces

page descriptions
(e.g. server page)

client
page

CPDS

CPTS

page description
is interpreted

Server

Browser

page targets
server side code

forms are
editable method calls

Fig. 11.1. CPDS and CPTS

page description language HTML or XHTML. The client page description is
interpreted by a browser. A page presents information to the user and offers
him or her one or more forms and links. Every form and every link target
one of the server-side scripts; that is, the user gets explicit control over the
dialogue flow. For the NSP approach it is crucial that a form may be viewed
as an editable method call, gathering actual parameters from the user. A form
may have preselected actual parameters, hidden parameters in more technical
terms. It follows that links can be subsumed conceptually under forms.

We coin the two terms client page description safety and client page type
safety for two desired properties of web applications.

Definition 11.1 (Client page description safety, CPDS). A web appli-
cation has the property of client page description safety if its server scripts
always only produce valid page descriptions with respect to a defined client
page description language.

Definition 11.2 (Client page type safety, CPTS). A web application
has the property of client page type safety if the client pages generated by the
server scripts always only contain such forms and links that provide exactly
those actual parameters that are expected by the respective targeted server
scripts.

Figure 11.1 shows the interplay of server-side scripts and the browser and
visualizes the notions of client page description safety and client page type



202 11 Typed Server Pages

safety. We use terms like client page type error, correctness, or checking ac-
cording to Definitions 11.1 and 11.2. We have chosen to use some more gen-
eral, less technical terms than might actually be needed at first sight, like
client page description language instead of HTML/XHTML. We did so in
order to foster the viewpoint that web applications are instances of a more
general class of ubiquitous applications, which may be characterized as sub-
mit/response style applications. Furthermore we wanted to emphasize that
the concepts that are investigated in the context of NSP do not stick to con-
crete web technology, but could add value to every future ultra-thin client
architecture supporting technology. Actually NSP guarantees only a weaker
client page description safety than valid HTML/XHTML output safety, as
will be explained in Sect. 15.2.4, but this is due to pragmatic reasons and
not technical reasons: furthermore the NSP notion of client page description
safety is justified by existing browser technology.

Current CGI-based server-side scripts receive values submitted by a form
or link conceptually as a stream of named values. In raw CGI program-
ming, the name/value pairs must be retrieved from an input parameter string.
The several well-known scripting languages and technologies, like PHP [194],
Perl [308], Tcl [241], Active Server Pages [195, 253], Python Server Pages [10],
Java Servlets [76], and Java Server Pages [248], support the retrieval of sub-
mitted values with appropriate data structures. But beyond this, these tech-
nologies do not support any appropriate notion of a server script signature,
i.e., the interesting types of the received string-valued parameters with respect
to a business logic or, in more code-oriented terms, with respect to a high-level
programming language type system, are not supported.

In contrast, NSP offers appropriate tags to define a complex server page
signature. Based on this Definition 11.2 of client page type safety obtains a
precise meaning in the context of NSP, because parameters that are expected
by a server page are just the parameters specified by the server page’s signa-
ture. NSP provides both client page description checking and client page type
checking. From the viewpoint of an NSP type system the generated client
pages are the actual code which has to be considered. The generated code
is naturally not available at deployment time, therefore NSP defines coding
guidelines in Sect. 15.2 for writing the server pages which are

• non-prohibitive: all reasonable applications of scripting are still allowed;
• sufficient: client page description and type safety are ensured;
• convenient: the coding guidelines target the NSP developer. They are nat-

ural and easy to understand. The coding guidelines provide the informal
definition of the NSP type system.

It is necessary to mention the debatable important opinion [242] known
as Ousterhout’s dichotomy. A division is made between system programming
languages for programming components from scratch and scripting languages
for programming component glue. It is argued that the typeless nature of a
scripting language is crucial – a property that enables rapid development. The



11.1 Type-Safe Interplay of Forms and Scripts 203

objectives of the present work contradict this core argument of Ousterhout’s
dichotomy.

Conservative Amalgamation

The NSP concepts are programming-language-independent results. They are
reusable. They must be amalgamated with a concrete programming language.
For every such amalgamation a concrete non-trivial language mapping must
be provided. The NSP concepts are designed in such a way that concrete
amalgamations are conservative with respect to the programming language.
That is, the semantics of the programming language and especially its type
system remain unchanged in the resulting technology. The NSP concepts are
explained through a concrete amalgamation with the programming language
Java. As a result of conservative amalgamation the NSP approach does not
restrict the potentials of JSP in any way; for example, its state handling
facility, the Servlet API session concept, is available as a matter of course.
Formal semantics of an NSP core type system are given with respect to an
amalgamation with a minimal imperative programming language.

Integration with Form-Oriented Analysis

NSP-based systems benefit from type safety. But beyond this NSP’s capability
for server pages’ functional decomposition suggests reconsidering web applica-
tion architecture and design. In the NSP approach a server-pages-based pre-
sentation layer is characterized as a closed collection of typed dialogue meth-
ods, an abstract viewpoint that is shared by form-oriented analysis. Based
on functional decomposition it is possible to find canonical mappings from
formcharts to NSP technology. Consequently NSP becomes an integral part
of form-oriented analysis.

Next Server Pages Preliminaries

The NSP technology [93] is presented by the concrete amalgamation of NSP
concepts with the programming language Java [127]. In the NSP approach a
server page is considered to be code of a programming language with defined
syntax and defined type system. In contrast, JSP code is just a convenient
notation for Java Servlets. It is essentially a mix of HTML and Java code,
which may occur inside special opening and closing scriptlet signs. Actually,
beyond being a convenient notation, JSP technology offers some sophisticated
mechanisms like tag libraries [78] and JSP actions, especially for supporting
the integration of Java Beans into a server page. Furthermore JSP is intended
to foster techniques for separating content from layout. But all these issues
are incidental to the current discussion. The semantics of a JSP server page
are given by the effect of a preprocessor that yields a Java Servlet by placing
the HTML parts of the server page into output statements and adding these
statements to the Java code that occurs inside the scriptlet signs.



204 11 Typed Server Pages

11.1.1 A Motivating Example

The improvements of the Servlet API over raw CGI programming (support
for retrieving values and a session mechanism) are available to JSP developers
as a matter of course; besides JSP technology has the same disadvantages as
other CGI-based technologies, as described in the introduction: JSP-based
systems may lack client page description and type safety. JSP does not offer a
natural server-side call to server scripting code. However, the combination of
the JSP actions jsp:include and jsp:param does not provide a usual type-
safe parameter-passing mechanism, it just provides a convenient notation for
the low-level Java Servlet include mechanism.

Listing 11.1 Java Server Pages: counter example – form definition

01 <html>

02 <head>

03 <title>Registration</title>

04 </head>

05 <body> <%

06 int j;

07 boolean c;

08 // computation of the variables j and c

09 for (int i=0; i<j; i++) { %>

10 <form action="http://localhost:8080/NewCustomer.jsp"> <%}%>

11 Name: <%

12 if (c) { %>

13 <input type="text" name="customer"><br> <%

14 } %>

15 Age: <input type="text" name="age"><br>

16 <input type="submit">

17 </form>

18 </body>

19 </html>

As an instructive example consider the system that comprises the two
server pages given in Listing 11.1 and Listing 11.2. The first server page gen-
erates a registration client page that contains a form for gathering a customer’s
name and age. This form targets a server page that stores the received data in
a database and forwards the request to another server page. Several dynamic
errors may occur. First of all, the opening form tag in line 10 of Listing 11.1
occurs inside a loop body. Only if the variable j has value 1 before the loop is
entered is a valid HTML document sent to the browser. The input capability
for the customer name occurs underneath a control structure in line 13. Only
if the Boolean variable c evaluates to true will the input capability actually
occur on the registration page. Listing 11.3 shows the result page for the case



11.1 Type-Safe Interplay of Forms and Scripts 205

Listing 11.2 Java Server Pages: counter example – targeted page

01 <html>

02 <head>

03 <title>NewCustomer</title>

04 </head>

05 <body> <%!

06 import myBusinessModel.CustomerBase; %> <%

07 String customer;

08 int age;

09 String foobar = request.getParameter("foobar");

10 customer = request.getParameter("customer");

11 try {

12 age = Integer.parseInt(request.getParameter("age"));

13 } catch(NumberFormatException e){

14 // error handling

15 }

16 CustomerBase.createCustomer(customer,age);

17 // further business logic %>

18 <jsp:forward page="Somewhere.jsp"/>

19 </body>

20 </html>

Listing 11.3 Java Server Pages: counter example – generated client page

01 <html>

02 <head>

03 <title>Registration</title>

04 </head>

05 <body>

06 <form action="http://localhost:8080/NewCustomer.jsp">

07 <form action="http://localhost:8080/NewCustomer.jsp">

08 <form action="http://localhost:8080/NewCustomer.jsp">

09 Name:

10 Age: <input type="text" name="age"><br>

11 <input type="submit">

12 </form>

13 </body>

14 </html>

when variable j has value 3 and variable c evaluates to false. The fact that
the form tag occurs three times in the client page is actually tolerated by
some of the ubiquitous web browsers, nevertheless it must be considered a
dynamic client page description error. For example, in the case when variable
j has value 0 even a tolerant browser cannot recover from the error, because



206 11 Typed Server Pages

together with the form tag the vitally information about the targeted page is
missing.

As an example of a dynamic client page type error, assume that the cus-
tomer parameter of the business logic method in line 16 of Listing 11.2 must
not be a null object, i.e., the targeted server page relies on the reception of a
customer name. However, it is not guaranteed that an input capability for the
customer name is offered to the user by the registration page. If no such input
capability occurs as in Listing 11.3, no respective value is sent on submitting
the form and consequently the effort to retrieve such a value in line 10 of
Listing 11.2 will result in yielding a null object.

Even more obviously, the developer would like to have a tool that gives a
warning with respect to line 9 in Listing 11.2, because a value bound to name
foobar will never be provided by a form of the registration page. However the
JSPick tool presented in Chap. 10.2 is able to detect such sources of error.

Another kind of dynamic type error may occur with respect to the cus-
tomer age parameter. A user may enter a value that is not a number, which
is an event that must be caught by the developer. Appropriate error handling
code, either through client-side or server-side scripting, must be provided,
which is a tedious and error-prone task.

11.1.2 The NSP Document Structure

NSP modifies and augments XHTML [304] due to the special needs of devel-
oping parameterized strongly typed server pages. Very importantly, an imple-
mentation of NSP will always only send XHTML to the browser, and con-
sequently NSP technology can be used immediately with existing standard
browsers, i.e., no plug-ins are needed.

Though NSP is an XML document that is interlaced with imperative code,
its objectives must not be confused with that of Extensible Server Pages
(XSP) [209], a dynamic XML technology. XSP is an integral part of the XML
publishing framework Cocoon, which targets separation of concerns between
content, logic, and style of web publishing applications. In contrast, the NSP
approach is not oriented too much towards building information architec-
tures [262] for the time being, but towards improving the stability of enterprise
information systems [181] with a tiered ultra-thin client architecture.

The name NSP/Java is used for the concrete language that results from
merging NSP concepts with the programming language Java. If it is obvious
from the context that not just the entirety of NSP technology concepts is
meant, the term NSP is used for NSP/Java, too. An NSP consists of a signa-
ture definition, a Java definition block, and a core document. There are NSPs
that may be called across the net by a form or a link, while others may be
called by another NSP on the server side in order to be included. For NSPs
that may be called across the Net the core document consists of a head and
a body; for the other kind of server page the core document content is en-
closed in include tags. A first example is given in Listing 11.4 and Listing 11.5,



11.1 Type-Safe Interplay of Forms and Scripts 207

which show the NSP counterpart of the customer registration system, which
was discussed in Sect. 11.1.1.

Listing 11.4 NSP: form definition

01 <nsp name="Registration">

02 <html>

03 <head>

04 <title>Registration</title>

05 </head>

06 <body><java>

07 boolean c;

08 // computation of the variable c </java>

09 <form callee="NewCustomer"><java>

10 if (c) {</java>

11 <input type="String" param="customer"></input><java>

12 } else {</java>

13 <hidden param="customer">"DefaultName"</hidden><java>

14 } </java>

15 Age: <input type="int" param="age"></input><br>

16 <submit></submit>

17 </form>

18 </body>

19 </html>

20 </nsp>

Listing 11.5 NSP: targeted page

01 <nsp name="NewCustomer">

02 <param name="customer" type="String"></param>

03 <param name="age" type="int"></param>

04 <java>import myBusinessModel.CustomerBase;</java>

05 <html>

06 <head>

07 <title>NewCustomer</title>

08 </head>

09 <body>

10 <java>

11 CustomerBase.createCustomer(customer,age);

12 </java>

13 <forward callee="Somewhere"></forward>

14 </body>

15 </html>

16 </nsp>



208 11 Typed Server Pages

The signature of a server page is defined with appropriate parameter tags.
Attributes are used for specifying the name and the type of a formal param-
eter.

Definition 11.3 (Web signature). A web signature is a record type which
consists of the specified formal parameters of an NSP as labeled components.

We coin another term for the concept of web signature, namely formal su-
perparameter. Analogously, an actual superparameter is the entirety of actual
parameters provided by a form or a link targeting an NSP with respect to a
given formal superparameter.

Definition 11.4 (Web server page). A web server page is an NSP that
may be called across the Net by a form or a link.

Definition 11.5 (Include server page). An include server page is an NSP
that may be called for inclusion in another NSP.

The web server pages are the front components of a tiered system’s presen-
tation layer, therefore we use the term dialogue method synonymously for such
server pages, especially to distinguish them from business methods. Similarly
we use the term dialogue submethod for NSP include server pages.

In NSPs Java code is placed inside java tags. Some Java code may be
placed between the signature definition and the server page core. It is called
a Java declaration in accordance with JSP terminology and hosts code that is
intentionally independent of the single server page invocation, such as import
declarations or a definition of state that is shared by all the several sessions.
Java code that occurs in the server page core is executed upon invocation of the
server page. The server page parameters are accessible in the inline Java code.
In addition to the tags it is possible to use Java expression tags as a controlled
variant of direct, i.e., Java-coded, writing to the output stream. Note that a
static type system cannot prevent such dynamic errors that result from using
the output stream to send computed description languages tags directly to the
browser. Generally, using the output stream for sending description language
is considered bad style and may lead to dynamic errors. It is an NSP rule
that the output stream must not be used in a way that corrupts the otherwise
type- and description-safe NSP system. For example, if a corrupted form that
is caused by a prohibited use of the output stream contains invalid input
capabilities or a wrong number of input capabilities, this is considered just as
a dynamic error, like division by zero.

In NSP no special non-XML syntax for expression scripting elements like
the JSP <%= and %> signs is available. Accordingly it is not possible to gen-
erate NSP tag parts, and attribute values especially may not be generated.
Element properties that may have to be provided dynamically are supported
by elements instead of attributes in NSP. As a result an NSP is a completely
block-structured document and therefore it is possible to give a precise con-
venient definition for the syntax of NSP, which is the essential basis for the



11.1 Type-Safe Interplay of Forms and Scripts 209

detection and exploration of further concepts of syntax analysis and syntax
manipulation. Moreover, an NSP is a valid XML [31] document. Therefore
NSP will benefit immediately from all new techniques developed in the con-
text of XML. In particular, NSP can be used in combination with XML style
sheet technologies [322, 222].

NSP Forms and Hyperlinks

An NSP form specifies the targeted dialogue method via a callee attribute.
Somewhat similar to the parameter-passing mechanism in ADA [298], a tar-
geted formal parameter of a called method is explicitly referenced by its name.
For this purpose the tags in lines 13 and 15 of Listing 11.4 have parameter
attributes.

In the present simple example the form provides actual parameters exactly
for the formal method parameters, either by user input or by hidden parame-
ters. In general the overall notion of type-safe calls of NSP methods demands
sophisticated guidelines for writing forms presented in Sect. 15.2 and a new
innovative widget set presented in Sects. 11.1.3 through 11.1.7.

The syntax of NSP hyperlinks follows the NSP form syntax; Listing 11.6
provides an example. Therefore the NSP hyperlink syntax is very natural, i.e.,
no low-level, tedious handling with special characters is needed in order to use
hyperlinks with parameters. An NSP link element must not contain any other
code than hidden controls and one link body element that gives the link text.
In fact it must contain exactly one hidden control of the correct type for every
formal parameter of the targeted dialogue method.

Listing 11.6 NSP: hyperlink

01 <link callee="NewCustomer">

02 <hidden param="customer">

03 "John Q. Public"

04 </hidden>

05 <hidden param="age"> 32 </hidden>

06 <linkbody> underlined link name </linkbody>

07 </link>

A Motivating Example

All the code of lines 7 to 15 in Listing 11.2, which is needed for the reception
of parameters, becomes a two-line web signature declaration in Listing 11.5.

In Listing 11.1 the opening form tag is a loop body, which may lead to
dynamic errors. In NSP this is prevented from the outset by NSP syntax. An



210 11 Typed Server Pages

element may only occur as a whole, i.e., with both opening and closing tags
underneath a control structure.

There is no assurance that the registration page generated by Listing 11.1
offers an input control for the customer name. In contrast, in the NSP code in
Listing 11.4 it is for example not allowed to omit line 13 without violating the
NSP coding guidelines, i.e., without provoking an error message at compile-
time.

Obviously faulty requests to non-existent parameters as in line 9 of List-
ing 11.2 are not possible in NSP code, because NSP is strongly typed and all
formal server page parameters have to be declared.

Furthermore, in an NSP system it is statically ensured that data provided
by the user are dynamically checked. That is, a server-side dynamic error
like the one described for the age parameter in Listing 11.2 would not be
possible in an NSP system because of the concept of active controls, which is
introduced in Sects. 11.1.3 and 11.1.5.

11.1.3 NSP Active Direct Input Controls

NSP supports the usual HMTL/XHTML controls, but they are refined and
elaborated further due to the special needs of a type-safe server pages tech-
nology. Each control is supported by its own element. Each control has a
param attribute, which is used to directly specify the name of the targeted
formal parameter. That is, the param attribute replaces the name attribute of
HTML/XHTML controls. Another usage of the param attribute is specifying
a field of a complex actual parameter of form message type as explained in
Sect. 15.2.3.

In HTML/XHMTL the input tag is used for a couple of conceptually
unrelated controls, like direct text input, radio buttons, check boxes, etc.
Every of these controls has its specifics; especially the behavior of non-direct
input controls differs fundamentally from the behavior of direct input controls.
Therefore in NSP every control type becomes a markup language element.

The input tag is used in NSP for a direct input field only. NSP pro-
vides different direct input fields for different programming language types.
That is, NSP is already typed on the level of controls. Compare this to
HMTL/XHTML again, where controls always yield only text, i.e., pure string
data. In HMTL/XHTML the type attribute is used to specify a widget kind.
In NSP the type attribute is used to specify the type of a direct input field.
The direct input controls of NSP are active input controls in the following
sense. A form that contains a direct input field cannot be submitted if the
user has entered data that are not type correct with respect to the field’s
type. Instead, an error message is presented to the user. Furthermore, in NSP
a formal parameter can be specified to be required by the developer. Then
a form that contains a direct input field that targets this formal parameter
cannot be submitted if the user has entered no data in this field. Again an
appropriate error message is presented to the user. Dynamic type checking



11.1 Type-Safe Interplay of Forms and Scripts 211

of data provided by the user and dynamically ensuring data entry are ubiq-
uitous problems in web interface development. The developer must provide
solutions by either client-side scripting with one of the ECMAScript [107, 169]
derivatives or server-side scripting, a tedious and error-prone task. With the
NSP notion of active direct input controls it is possible to statically ensure
the desired dynamic checks.

In NSP/Java the Java types int, Integer, String, and the type Date of the
JDBC API [316] are supported by direct input fields. If data entry for a formal
parameter is optional and no data are entered by the user, a null object is
passed as the actual parameter on submit. The single exception to this rule is
the type String: if no data are entered in a field for an optional parameter the
empty string is sent instead of a null object. For formal int parameters data
entry is implicitly required. The type int is a Java primitive type and no null
object is available for signaling that no data have been entered. Alternatively
it would be possible to select a certain int value to take over the role of the null
object, most probably zero. But then the receiving dialogue method could not
distinguish between actually entered data and the event when no data have
been entered.

There are two further direct input capabilities for the type String, namely
a text area and a password field.

The XForms standard [106, 105] allows for specifying constraints on data
gathered by a form. In order to address parts of XML data in expressions
XForms relies on XPath [52]. Type correctness and entry requirements are im-
portant instances of possible XForms constraints. But the XForms approach
goes beyond these. It is possible to specify arbitrary calculations and val-
idations on the gathered data. An event model allows for the appropriate
reaction on the violation of the given constraints. The technology allows for
sophisticated constraints, but the notion of NSP active controls is different.
In XForms constraints can be given with respect to a form. But it is not en-
sured that all forms targeting a critical server-side action actually prevent the
same errors from occurring. In contrast, in NSP, strictly based on the typing
of server pages, the constraints are given for formal parameters of dialogue
methods. In this way it is possible to statically ensure the desired dynamic
checks; that is, NSP active direct input controls are dynamically type-safe in
the sense that they make NSP-based systems type-safe with respect to dy-
namically entered data. A programming language is dynamically type-safe if
untrapped errors are prevented [39].

11.1.4 Actual Object Parameters

In HTML/XHTML only text, i.e., string data, can be passed as a hidden
parameter, an item of a select menu, or the value of a radio button or check
box. The JSP expression scripting element supports implicit coercion for data
that are convertible to String in order to send them to the user agent. However,
the data are received as string values by the targeted server pages.



212 11 Typed Server Pages

In the NSP approach arbitrary objects can be passed virtually across the
Web, i.e., passed to the user agent and passed to a dialogue method on sub-
mit in the sequel. An object can be passed in this way as a hidden parameter,
an item of a select menu, or the value of a radio button or check box. A
value of primitive type is just copied to the user agent and to the dialogue
method on submit. The present type is preserved. But NSP supports pass-
ing of objects of arbitrary non-primitive types. Somewhat similar to the RMI
parameter-passing mechanism [285], two different parameter-passing seman-
tics are supported. First, as a default, a reference to the object in question
is passed to the receiving dialogue method. As an alternative, if the passed
object is serializable [286], the object is copied and a reference to this copy is
passed to the receiving dialogue method. Based on the semantics of serializa-
tion, arbitrary deep copies of object nets can be passed as parameters.

A hidden parameter, select menu item, radio button, or check box value
must be given as a Java expression. This expression must have the type of
the encompassing control. The encompassing tags implicitly switch to a Java
expression modus, i.e., no additional expression tags are needed in order to
explicitly signalize a Java expression. Furthermore this rule applies whenever
appropriate in order to give a Java object as a certain desired property of a
control. For example, a default value may be given for direct input fields. In
HTML/XHTML the tag’s value attribute is used for specifying the default
value. In NSP input field tags may contain a type correct Java expression for
this purpose. Again the input field tags implicitly switch to a Java expression
modus. The default value of a direct input field must match the input field’s
type or it must be the empty String.

11.1.5 NSP Active Single Select Controls

NSP supports single select menus and multiple select menus, which are distin-
guished as usual by a multiple attribute. A select element has option content
elements. The NSP option element has no value attribute, but instead of this
it has a value content element and a label content element. The value tags
contain a Java expression for a selectable data item. The label tags contain
a Java String expression that is displayed in the select menu control and de-
notes the respective data item. In NSP the radio button is supported by an
element.

Single select menus and radio buttons are conceptually equal. If a single
select control targets a formal parameter that is not an array parameter, it
must be ensured that the user actually chooses one of the items. Therefore
NSP select menus and radio buttons are again active: a form encompassing
such a control cannot be submitted unless the user has finally chosen one of
the items.

Both NSP radio buttons and NSP select menu options have checked at-
tributes. Instead of employing activity for radio buttons and select menus the
NSP approach could rely on the request for comment document on HTML [22]



11.1 Type-Safe Interplay of Forms and Scripts 213

that specifies: if no radio button or select option is checked, the user agent
chooses the first one as preselected. Regrettably many ubiquitous browsers
do not implement this behavior. For this reason even the HTML specifica-
tion [257] differs from [22] in this point. As a result a set of radio buttons or
a single select menu may yield no actual parameter. But exactly this must be
prevented if a formal parameter is targeted that requires data entry. There are
two more solutions to this problem other than active controls. First, an NSP
container could dynamically ensure that a checked attribute is added when
needed, i.e., it could simulate the behavior demanded by [22]. Secondly, the
NSP type system could be extended by checks that force the author to ensure
that checked entities are always provided. Besides, single select capabilities
with no preselected items are desired.

11.1.6 Auxiliary NSP Interaction Controls

NSP supports hidden parameters. Hidden parameters offer a way to over-
come the stateless nature of the Hypertext Transfer Protocol [113], because
they allow for maintaining state between client/server exchanges. However,
there are other opportunities for this, i.e., techniques based on client state
persistence [187] and URL rewriting. Anyway today’s APIs offer high-level
session-tracking mechanisms. Therefore the more interesting aspect of hidden
parameters is the following. Hidden parameters enable arbitrary reuse of a di-
alogue method in contexts where only a part of its web signature data should
be determined by user interaction.

NSP distinguishes between two check box concepts that reflect the two
different ways in which the HTML/XHTML check boxes are used. First, the
check box element yields an actual Boolean parameter, true for a checked
check box, false for an unchecked check box. Secondly, a set of value check
box elements can be used to offer the user a choice of items. In the value check
box tags a selectable data item is given as a Java expression. Assume a set of
value check boxes that target the same formal parameter. Such a value check
box set is conceptually equal to a multiple select menu, because the user may
check a couple of the alternatives offered. A value check box set yields a value
array on submit.

11.1.7 NSP Submit Button

In HTML/XHMTL the submit button can also specify a name/value pair.
The submit button is subsumed under the input element. A form is allowed to
have several submit buttons. This is an important facility that is used in web
applications to offer the user a choice between different functionalities for the
same form. For this purpose the values that represent different functionalities
must be defined and the targeted script must switch to the correct alternative
on submit. The respective code quickly becomes fault prone; its design suffers
an “ask what kind” antipattern. Note that we take a generalized view of



214 11 Typed Server Pages

“don’t ask what kind” that is explained in Sect. 11.4.1. In contrast, in the
NSP approach it is possible to specify a targeted dialogue method for each
submit button. The NSP submit element has an optional callee attribute for
this purpose. If no callee attribute is given for a submit element, the callee
attribute of the encompassing form is inherited. Furthermore a submit element
can contain hidden parameters, so again NSP gains from its solid theoretical
basis: a form can target a variety of different dialogue methods providing
different functionality and possessing different web signatures. This allows for
flexible and at the same time robust design.

11.1.8 Towards an Improved Widget Set

Further improved widget sets are easily imaginable: for example, widgets that
are tailored to gather data of complex, user-defined type, or widgets that allow
drag and drop in the interaction within a page. That is, there are advanced
form and widget concepts, which are not ubiquitous in current types of sub-
mit/response systems, but which show that form-based interfaces can have a
comfortable appearance and functionality. However, a discussion of these is-
sues does not undermine the submit/response-style interaction paradigm but
rather supports it.

Direct input widgets are in the first place textual input fields. Strongly
typed input widgets would allow only input of correct primitive type. Strongly
typed widgets are directly related to formatted widgets. Examples are fixed
length, integer, fixed point, date, and IP numbers. Certain special formatting
widgets can be seen as widgets for complex data types, e.g., IP address widgets
can be built from four integer widgets. In this case it is desirable that the
framework allows us to define the dot key as an alternate key for focus shift:
hence, if the user enters the IP address in the keystroke sequence with dots,
the IP address is correctly placed across the four widgets.

If the user is required to enter a selection from a large set, neither radio
buttons nor select lists are suitable. An example is the input field for a train
station. Here an adequate input widget would be an auto complete widget. If
the user enters a character sequence, a list of all choices with this sequence as
a prefix is offered.

11.2 Functional Decomposition of Server Pages

In this section we provide a discussion of important current approaches to
web interface programming based on the Model 2 architecture [96]. From
the results we show how to improve web presentation layer architecture. The
enabling technology for this is the NSP concept of typed server-side calls to
server pages. The concept of higher-order server pages is introduced, which
enables even more flexible design. It is demonstrated how the improvements
integrate with form-oriented analysis. Furthermore we provide a comparison



11.2 Functional Decomposition of Server Pages 215

of proven and current web technologies, i.e., technologies that are related to
the web presentation layer or web-enabled access to information systems.

In HTML/XHMTL only plain unidirectional links are possible. Though a
limited number of different link behaviors are available, important simple no-
tions such as a desired page decomposition are not defined for HTML/XHTML.
XLink [82] overcomes these limitations in a general XML setting. XLink has
been influenced by [168]. XInclude [204] improves XLink with respect to doc-
ument decomposition by defining a processing model for merging documents.

The central architectural questions concerning web-based system interfaces
are located on the server side. We review current web application frameworks
for building dynamic web pages. Web application frameworks consider only
the presentation layer in a multi-tiered web application. Our considerations are
based on an analysis of the problem addressed by these frameworks. Special
attention is paid to proposed composition mechanisms. In that comparison
we can analyze the technological contributions as well as the shortcomings of
these approaches.

11.2.1 Model 2 Architecture

In practice the tight coupling of code with layout has become a drawback
for server pages technology. Therefore, separation of business logic processing
and presentation generation, called processing/presentation separation in the
following for short, became a goal.

In the discussion on how to reach processing/presentation separation, Sun
has become influential by proposing several server-side architectures, such as
the “redirecting request” application model – later coined the Model 2 ar-
chitecture [248]. This model has become commonly known as following the
Model View Controller paradigm. We will in due course outline that it is a
misconception about Model View Controller if the Model 2 architecture is
subsumed under this pattern. We therefore give an evaluation of the Model 2
approach without relying on the MVC argument.

The Model 2 architecture uses a threefold design in which the request is
first directed to a front component, typically a Servlet, which triggers the cre-
ation of a content object, typically a Java Bean (Fig. 11.2). The bean is then
passed to a presentation component, typically a scripted server page where the
data within the bean are embedded in HTML/XHTML. The server-side ob-
jects are considered as the model (M), the front components as controllers (C),
and the presentation components as views (V), because for Model 2 archi-
tecture some good practices are established on how to partition the request
processing between the three parts. The most important recommendation is
related to the use of the server pages: the server pages should be used only for
presentation purposes. Model 2 architectures can achieve a reuse of presenta-
tion components. If several front components generate the same output page
under certain conditions, this page can be used from both components. Model



216 11 Typed Server Pages

2 also allows separate maintenance of totally different response pages that may
be generated from the same front component under certain conditions.

client

Java Server Page

Java Servlet
request

response

request
dispatching

front

presentation

server-side
objectsaccess

create/update
M

C

V
Fig. 11.2. Model 2 architecture

The Struts [77] framework is widely accepted as the open source reference
implementation of the Model 2 architecture. Struts proposes functional de-
composition based on a proprietary composition approach in which business
processing units inform the controller object about the next processing step.
Parameter passing between processing units is not established by the Java
method parameter-passing mechanism, but by emulating a parameter-passing
mechanism through transferring bean objects.

It is important to clarify a serious misunderstanding in architecture pro-
posals for web site development. The web application frameworks following
the Model 2 approach do not follow the MVC paradigm. This paradigm [186]
was introduced in Smalltalk and is a completely different concept. It only has
superficial similarities in that it has three components from which one is re-
lated to the user interface, another to the application. However, the problem
solved by the MVC paradigm is totally different. MVC is related to event
notification problems within a GUI that provides different views of the same
data, which have to be synchronized. MVC was renamed within the pattern
community as observer pattern [119] and became an accepted general pattern
for event model design problems. For example, the Java Beans component
model relies on an observer-pattern-based event model. As another example
the GUI event model of the first Java version 1.0 followed the “chain of respon-
sibility” design pattern [128], but today it follows the observer pattern. The
misnomer is even more astounding if one considers that the property of GUIs
which makes MVC necessary, namely view update, i.e., push technology, is
known to be absent in the pull-based approach of HTML/XHTML browsers.

The fact that web application frameworks rely on a misconception of the
MVC paradigm does not necessarily imply that these frameworks have a bad



11.2 Functional Decomposition of Server Pages 217

design. But the argument for this architecture, namely that it follows a proven
good design, is flawed. Only by recognizing that this argument is invalid is
the way free for a new evaluation of the architecture and a recognition of
advantages as well as drawbacks.

The Model 2 architecture defines a fixed decomposition combined with an
intended separation of concerns. The incoming request is performed on the
business model, then data are presented to the user in response. The difficulty
with the approach lies not in the proposals for separation of concerns, but with
the composition mechanism offered. The question is which semantics govern
the interplay between the components: after you know how to divide, you have
to know how to conquer.

The Model 2 architecture offers a complex communication mechanism
based on the passing of beans. Beans are attached to a hashtable by the gen-
erating unit and retrieved from the hashtable by the target unit. In that way
data are transmitted from the Servlet to the scripted page. This mechanism is
nothing more than a parameter-passing mechanism, but without static type
safety. The semantics of the composition paradigms of presentation and busi-
ness logic are only conceivable by direct reference to the components found in
the running system. In contrast, we will later use our NSP approach, where
simple method call semantics are sufficient and allow for a sound architecture.
Hence in the Model 2 architecture a considerable part of the architecture re-
defines a parameter-passing mechanism which delivers no added value beyond
method invocation. The Model 2 architecture therefore is still interwoven with
a legacy-technology-driven design pattern that is far from creating a clear-cut
abstraction layer.

11.2.2 Server-Side Calls to Server Pages

NSP is open with respect to architectural decisions. It distinguishes between
server pages that may be called across the Net by a form or a link and server
pages that may be called by another NSP on the server side in order to be
included. The latter server pages have been termed dialogue submethods ear-
lier. The NSP call mechanism for dialogue submethods has identical seman-
tics as the Java method call with respect to parameter passing. It is the only
composition feature that is needed to build sound and well-understood web
application architectures. NSP does not force the user into a specific design.
With NSP no early decision between Model 1, Model 2, or other architectures
is necessary.

The NSP approach to design can be seen as a generalization of another
proposal of the JSP specification, named “including requests” [248].

In order to call a server page from within another server page, the call el-
ement is used (Listing 11.7, lines 8–11, lines 14–16). The opening call tag has
a callee attribute. Upon call the targeted server page generates a document
fragment that replaces the respective call element in the calling document.
The output of the dialogue submethod must be a valid content element with



218 11 Typed Server Pages

S

S2

aServlet

setP1(p1:Type1)

setPN(pn:Typen)

aBean

getPM1():Typem1

getPMN():Typemn

condition1 m()

output
generation

getPN1():Typen1

getPNN():Typenn

condition2 n()

parsing

request(p:(String x String)*)

aJSP1 aJSP2

S1

output
generation

business logic

aNSP2aNSP1aNSP

request(p:S)

business logic

condition1

m(p1:S1)

condition2 n(p2:S2)

output
generation

output
generation

Next Server Pages

Model 2 Architecture

request
dispatching

request
dispatching

Fig. 11.3. Model 2 architecture versus NSP functional decomposition. The figure
shows a typical control and data flow in a Model 2 architecture system except for
details of request dispatching and the improvement of a counterpart system build
on NSP technology by an interaction diagram



11.2 Functional Decomposition of Server Pages 219

respect to the context of the respective call element. Actual parameters are
given to the called dialogue submethod by actparam elements. The open-
ing actparam tag has a param attribute, which has the same purpose as the
param attributes of the NSP control elements. For each formal parameter of a
dialogue submethod exactly one actual parameter must be given in every tar-
geting call element. Call elements may only contain actparam elements; espe-
cially they cannot contain dynamic code. The call element provides the NSP
equivalent of the JSP request dispatching include mechanism. Analogously
NSP supports redirect and server-side redirect, i.e., forward, by appropriate
elements in the same way as the call element.

The example in Listing 11.7 consists of a main page and two dialogue
submethods. The first dialogue submethod receives a String parameter and
an int parameter and produces a message with respect to these parameters.
The second dialogue submethod is called inside a table element and receives
an array of Article objects. An Article object has three String properties x,y,
and z. The dialogue submethod generates a table row for each object. A row
contains three table data cells, one for each object property.

In the JSP technology parameter passing to a JSP differs fundamentally
whether the JSP is called across the Net or called on the server side. In the
first case, parameters come as raw string data, as the data are inherited from
the old CGI mechanism. However, if a server page is called locally, it is estab-
lished coding practice to pass the parameters by a bean object attached to
the request parameter. Hence, a page must be designed either to be callable
from the Net or to be callable from the server, and in both cases the devel-
oper has to face a parameter-passing mechanism different from any reasonable
parameter-passing mechanism. In the Servlet request dispatching mechanism,
it is possible to attach new name/value pairs to the request object URL before
invoking another Servlet. The JSP technology provides a JSP standard action,
i.e., the param action, for attaching new arguments for included server pages.
However, both of these are not parameter-passing mechanisms, because only
string parameters can be attached in an uncontrolled manner. In NSP, in con-
trast, parameter-passing is identical whether the page is called over the Net
or within the server. In both cases the parameter-passing mechanism is essen-
tially identical to the parameter passing encountered in Java. The parameters
of a page in NSP behave identically to local variables in the Java code; in fact
they are local variables initialized by the actual parameters. The difference
is visualized in Fig. 11.3. This transparency in the parameter-passing mech-
anism comes at virtually no additional cost compared to the approaches in
web application frameworks.

NSP allows for arbitrary application architectures based on functional de-
composition. NSP frees the developer from considering the implementation
details of the parameter-passing mechanisms. Hence all special runtime enti-
ties that are needed in NSP to deliver the method call semantics are hidden
from the developer. Processing/presentation separation is in the first place a
pattern for source code organization. NSP allows the challenges in process-



220 11 Typed Server Pages

Listing 11.7 NSP: functional decomposition with dialogue submethods

01 <nsp name="mainPage">

02 <html><head><title>Some Page</title></head>

03 <body><java>

04 String customer;

05 int age;

06 Article[] articles;

07 // get data for variables customer,age and articles </java>

08 <call callee="prelude">

09 <actparam param="customer">customer</actparam>

10 <actparam param="age">age</actparam>

11 </call>

12 <table>

13 <tr> <td>X</td> <td>Y</td> <td>Z</td> </tr>

14 <call callee="tableContent">

15 <actparam param="articles">articles</actparam>

16 </call>

17 </table>

18 </body>

19 </html>

20 </nsp>

21

22 <nsp name="prelude">

23 <param type="String" name="customer"></param>

24 <param type="int" name="age"></param>

25 <include>

26 Hello Mr. <javaexpr>customer</javaexpr> !

27 <!-- other ouptut with respect to customer and age -->

28 </include>

29 </nsp>

30

31 <nsp name="tableContent">

32 <param type="Article[]" name="articles"></param>

33 <include><java>

34 for (i=1;i<articles.lentgth;i++) {</java>

35 <tr>

36 <td><javaexpr>articles[i].getX()</javaexpr></td>

37 <td><javaexpr>articles[i].getY()</javaexpr></td>

38 <td><javaexpr>articles[i].getZ()</javaexpr></td>

39 </tr><java>

40 }</java>

41 </include>

42 </nsp>



11.3 Higher-Order Server Pages 221

login

validate

show

home

mail1

mail2

mail3

exit

user logged in ?

inbox

business logic presentation

mymail

userid

passwd

store ID

error

to new user...

show page

home page

correct userid/passwd

Browser

new user

submit

mailnumber

user already logged in

else

else

Server

Fig. 11.4. Example interaction diagram. The figure shows the login dialogue of a
web-based mail account. The user logs in and views his or her inbox. If the stores a
password for a certain time no login is necessary

ing/presentation separation to be solved without referring to system architec-
ture. In contrast, in NSP the functional decomposition mechanism allows for
the desired separation of concerns. In Fig. 11.4 we give an interaction diagram
which shows the login dialogue of a web-based mail tool. The user logs in and
views his or her inbox. If the user stores a password for a certain time no login
is necessary. In the given example the depth of decomposition is adapted ac-
cording to the complexity of the respective functionality. The login screen is
used for the initial login screen as well as for the login screen after an invalid
login attempt. Viewing a mail is realized as a simple server page call. The
example demonstrates the openness of NSP for different architectures.

11.3 Higher-Order Server Pages

NSP formal server page parameters may receive server pages again. This intro-
duces the notion of higher-order server pages. The higher-order server pages
concept can be exploited to foster system maintainability and system part
reusability.

NSP introduces the Page type as a single proprietary type to be used for a
formal parameter in addition to the types of the amalgamated programming
language. Formal parameters of Page type may be used as callee attributes



222 11 Typed Server Pages

of opening forms, links, and calls. For a formal Page parameter of a dialogue
method one hidden control, single select menu, or at least two radio buttons
must be provided in every form targeting the method. The value provided
by the control must be the name of an existing server page that belongs to
the system or again a formal Page parameter. A web signature with a formal
Page parameter may be equally targeted by a hyperlink or, if the web signature
belongs to an include server page, by a server-side call, with appropriate usage
of hidden parameters and actparam elements.

Listing 11.8 gives a simplified example of a typical dialogue cycle:

input page – server-side validation – error page

A registration page includes a registration form by a server-side call. The
registration form offers a text input field. The default value of this field is a
parameter of the registration form submethod. The registration page chooses
an empty string as default for the input field. Importantly the form provides
its encompassing include server page as the actual parameter. It is used by
the targeted server page as an error page. On submit the targeted server page
first checks a business rule concerning the customer name. If no error occurs,
the customer name is processed and the dialogue is continued by forwarding
to another server page. Otherwise the form that targeted the server page is
redisplayed and serves as a simple error page. This time the last user’s input
for the customer name is the default value for the input field. The example
given in Listing 11.8 is an instance of a more general, common design problem
that can be given a reusable, flexible solution based on a higher-order server
page concept. Consider the case where several forms target the same dialogue
method, which processes the data and branches the dialogue flow, and the
next page in the dialogue depends on the form that triggered the server page.
Without higher-order server pages the developer must explicitly keep track
of the dialogue and must switch to the correct next page accordingly, which
is an instance of a design that suffers an “ask what kind” antipattern in the
sense of our view of “don’t ask what kind,” which is discussed in Sect. 11.4.1.
Figure 11.5 shows a feature containing three registration pages similar to the
one given in Listing 11.8. The feature is visualized as a formchart. The server
action for processing new customer data validates submitted user entry and
presents an error page to the user if necessary. In the case where the action
has been triggered by the first or third registration page, the respective page
is redisplayed. Note that the dialogue constraint language of Sect. 5.4.1 is
used to express the flow conditions in Fig. 11.5. In the case where the action
has been triggered by the second registration page, a specific error page is
presented to the user.



11.3 Higher-Order Server Pages 223

Listing 11.8 NSP: higher-order server pages

01 <nsp name="Registration">

02 <html>

03 <head><title>Registration</title></head>

04 <body>

05 <call callee="RegistrationForm">

06 <actparam name="defaultCustomer"> "" </actparam>

07 </call>

08 </body>

09 </html>

10 </nsp>

11

12 <nsp name="RegistrationForm">

13 <param name="defaultCustomer" type="String"></param>

14 <include>

15 <form callee="NewCustomer">

16 <input type="String" name="customer">defaultCustomer</input>

17 <hidden name="errorPage">RegistrationForm</hidden>

18 </form>

19 </include>

20 </nsp>

21

22 <nsp name="NewCustomer">

23 <param name="customer" type="String"></param>

24 <param name="errorPage" type="ServerPage"></param>

25 <java>import myBusinessModel.CustomerBase;</java>

26 <html>

27 <head><title>NewCustomer</title></head>

28 <body><java>

29 if (CustomerBase.validate(customer)) {

30 CustomerBase.createCustomer(customer);</java>

31 <forward callee="Somewhere"></forward><java>

32 } else {</java>

33 <call callee="errorPage">

34 <actparam name="defaultCustomer"> customer </actparam>

35 </call><java>

36 }</java>

37 </body>

38 </html>

39 </nsp>



224 11 Typed Server Pages

new Customer

registration
A

registration
B

registration
C

somewhere

error and registrationA→along

error and registrationC→along

error and registrationB→along registration
B

not error

Fig. 11.5. Higher-order server pages design example

11.4 A Comparison of Web Technologies

11.4.1 The “System Calls User” Approach

The domain-specific language [83] Mawl (Mother of All Web Languages) [16,
17, 189] is a server script approach with a sophisticated concept for form pre-
sentation. The definition language for forms is an HTML dialect. The scripting
language is oriented towards the programming language C. Form presentation
to the user is done in a “system calls user” way, i.e., a procedure is called in
the server script. The actual parameters that are passed to the procedure are
the data presented to the user; the return value of the procedure is the data
entered by the user. In this way, Mawl allows for seamless integration of a
script organizing session concept. The input type and output type of a form
must be declared. Mawl supports static type checking of these types. Iterator
tags, indexing for list data, and a dot notation for record data are available
in the form description language for data presentation. Mawl separates be-
tween service logic code and markup language from the outset. Based on this
device independency [35] is introduced to a certain extent: forms cannot be
described just in the aforementioned HTML dialect [15], but in the Phone
Markup Language (PML) [258], too. PML allows for describing documents
that are served over a telephone by special telecommunication portal middle-
ware. PML is one of the precursors of Voice XML [210]. In the “system calls
user” approach the overall control flow is prescribed by the server script code,
because the return point of a form presentation is fixed. Form presentations
are treated like procedure calls: after form processing the control flow returns
to the call point. This abandons the core paradigm of hypertext, where a page
may encompass several links and forms each targeting different locations. In
order to add flexibility, Mawl supports multiple submit buttons. In the case
where a form should be able to target different server actions, the receiving



11.4 A Comparison of Web Technologies 225

script can analyze which submit button has been pressed, and can branch
the control flow appropriately [68]. That is the purpose of the usual HTML
multiple submit buttons, too. However, the resulting designs relying on such
control flow branching must be considered flawed. These systems seriously suf-
fer an “ask what kind” design antipattern resulting in high coupling and low
cohesion. The situation is even worse if multiple forms target different server
actions. These multiple forms must be emulated by one single superform and
several submit capabilities. The output type of the superform must encompass
the output types of all emulated forms, which has to be considered a further
design flaw. We use the term “ask what kind” as an antipattern name in a
generalized sense. Assume that a form containing several submit capabilities
is to be reused. Then every scripting code that reuses the form is responsible
for branching the control flow correctly – high coupling. This is an error-prone
pattern. Furthermore, consider a change to the submit buttons in the forms.
Now it is necessary to be aware of all the distributed hard-wired case struc-
tures and to fix them accordingly – low cohesion. The term “don’t ask what
kind” [55, 56] has been coined in the object orientation community for the use
of polymorphism as a basic pattern of assigning object responsibilities [192]
for similar reasons.

11.4.2 Web Application Frameworks

The NSP approach must not be mistaken for a variant of architectural ap-
proaches. These web application frameworks target separation of presentation,
content, and logic to different extent. Web application frameworks follow an
approach that has become known as MVC architecture or Model 2 architec-
ture. Further objectives of these web application frameworks can be integra-
tion with enterprise application frameworks, rapid development by provid-
ing an integrated development environment, support for internationalization,
support for security, or support for dynamic form field validation. A promi-
nent commercial MVC web application framework is the Sun ONE Applica-
tion Framework (JATO). The most widespread application servers accord-
ing to [256], namely Oracle9iAs, IBM WebSphere, and BEA WebLogic, come
along with MVC web application frameworks, too. WebMacro is an early
open source project that allows the separation between Java and HTML.
Other prominent open source web application frameworks are Struts [77] and
Cocoon, both hosted by the Jakarta project.

11.4.3 Functional and Logic Programming Language Approaches

The mature, comprehensive WASH project offers two technologies WASH/CGI
[294] and WASH/HTML [292, 293] for web authoring based on the functional
programming language Haskell [150]. WASH/CGI offers static checks for user
interface type safety, and WASH/HTML offers static checks for weak user in-
terface description safety. WASH/CGI is a domain-specific language for server-
side web scripting. Dynamic generation of HTML output is monad-based. The



226 11 Typed Server Pages

form presentation concept encompasses a callback mechanism that allows for
full design flexibility. WASH/CGI programs are dynamically type safe: un-
trapped errors cannot occur, because necessary server-side reaction to user-
entered data that cannot be parsed is enforced. A compositional approach to
specifying form elements is offered. WASH/HTML defines a Haskell combi-
nator library for dynamic XML coding. In [293] four levels of XML validity
are defined. Well-formedness is the property of correct block structure, i.e.,
correct matching of opening and closing tags. Weak validity and elementary
validity are both certain limited conformances to a given DTD. Full validity is
full conformance to a given DTD. The WASH/HTML approach can guaran-
tee full validity of generated XML and guarantees weak validity with respect
to the HTML SGML DTD under an immediate understanding of the defined
XML validity levels for SGML documents.

There are a couple of other projects for dynamic XML generation that
guarantee some level of user interface description language safety, e.g., [138,
212]. We will delve further on some representative examples.

A Haskell library for CGI scripting is proposed in [212]. There is also
a server pages technology available for Haskell [215]. Haskell Server Pages
guarantee well-formedness of XML documents. The small functional pro-
gramming language XMλ [273] is designed to ensure full XML validity [214].
XMλ is based on XML documents as basic data types. The approach given
by [212, 215, 273, 214] comes along with a client-side scripting technology for
Haskell [213].

Yet another project in the context of Haskell is [312], which investigates
two different approaches. In the first approach a library for XML processing
arbitrary documents is provided, and well-formedness of XML documents is
ensured. The second is a type-based translation framework for XML docu-
ments with respect to a given DTD, which guarantees full XML validity.

The LAML (Lisp Abstract Markup Language) project [234, 235] proposes
web programming based on Scheme. Two other Scheme-based web publish-
ing systems are proposed in [255] and [129]. Beyond this it is shown in [129]
how the features of a Scheme extension can be exploited for an efficient web
server implementation. A conceptual basis for the continuation style of func-
tional web publishing technologies is given by [151] as a generalized notion of
monads.

In [138, 139] a comprehensive CGI programming library for the functional
logic multi-paradigm language Curry is proposed. A notion of submit button
event handler is introduced and enables in effect a callback-style programming
model. A specific abstract data type is used for references to input fields, which
enables compile-time checks with resepct to input field naming. Pillow [37, 36]
is a CGI library for the CIAO Prolog system. LogicWeb [198] is a toolkit for
even improved amalgamation of logic programming and web programming.
Neither the Pillow approach nor the LogicWeb approach offer user interface
type safety.



Part III

Semantics



12

The Integrated Source Code Paradigm

In this chapter we discuss the domain of so-called collaborative work, which
is at first hand separate from the area of enterprise applications but which
has as it will turn out a strong connection to enterprise applications; indeed
this connection will deliver important synergies. Collaborative work is a typ-
ical activity of employees in a modern organization, separate from the use of
enterprise applications. If we use office applications not only for us alone, but
in the context of an intensive teamwork, this activity becomes collaborative
work. Computer supported collaborative work is the vision of performing this
team work with the support of a powerful software that supports us in version-
ing and project management, we call it the team server. The basic paradigm
of collaborative work is also different from work on an enterprise application.
The work product of a single unit of work is more a document and less a filled-
out form. More generally, the result is a incremental change of a document,
we call it a delta of this document. The basic model of collaborative work is
that team members reserve documents for their exclusive write access, called
check out. The entering of the changed document is called check in.

12.1 Towards Structured Collaborative Work

There are many examples of collaborative work where the team server uses
whole documents as the smallest unit of interest. The team server keeps ba-
sically versions of documents. In concrete technology, the team server keeps
often deltas of documents. The system CVS is a classical example, for which
ASCII files are the single unit of interest. But there is an important class of
collaborative work which asks for a more elaborate approach. It is this the case
that the documents produced by the collaborative work are structured docu-
ments. Software development and CAD are examples. In the case of software
development the document structure is given by the programming language.
The structure recognized by the team server can include the syntax, the static
semantics including the type system, and parts of the dynamic semantics.



230 12 The Integrated Source Code Paradigm

Currently, many software projects are managed with CVS. The CVS sys-
tem in itself is not aware of the programming language structure. The team
server hence does not enforce or support correctness according to the structur-
ing rules of the document type. Another modern form of collaborative software
usage however uses a team server which compiles every version that is checked
in and may even perform automatically unit tests on this code. Such unit tests
can be developed from the programmers and added to the unit test base. This
approach would even allow to reject check-in for deltas which fail compilation
or unit testing.

The aim of this chapter is to develop a high-level theory of such potentials
for a team server for structured documents. This discussion of collaborative
work stays in a twofold connection to enterprise applications. On the one hand,
as we have seen in the chapters before, the creation of enterprise applications
involves a plethora of formats for structured documents. Not only are the
artifacts which comprise the executable enterprise software of an increasing
number of formats – HTML, Java, C#, SQL, WSDL, XML. Also in the mod-
eling process of enterprise applications there is a huge demand for powerful
special purpose languages like the modeling methods presented in the pre-
vious chapters, formcharts, dialogue constraints, data models. It is therefore
intuitive that an advanced tool base for the development and maintenance is
a powerful asset for leveraging the full potentials of such a special purpose
approach.

But we will see that there is also a very natural way in which our con-
siderations on data modeling can help in obtaining a semantically rigid yet
simple model for collaborative work on structured documents. The key idea
is of course here once again a courageous and somewhat reductionist thesis.
In this case it is the statement: documents are just data. Why should we not
use our powerful concepts for persistent data in order to create persistence
for documents? Moreover, for our aim of understanding collaborative work on
structured documents, we will use a second powerful identification of terms.
The fact, that we have structure in documents and type systems in our data
model as a tool, fosters the following immensely far-reaching statement: a
document format definition is just a data type definition. We now make this
insight operational and propose the following approach to collaborative source
code development: we use our data model to represent structured documents,
and we define document types by creating data types. This so far is the core
concept of the integrated source code paradigm presented in this chapter.

However, we will also offer one further conceptual step. This final third step
will be that we even use our interaction and operation model for the manipu-
lation of the documents, or even more generally speaking, of the team server.
Hence we use the well understood interaction paradigm of form-oriented anal-
ysis for source code manipulation. The result is then a form-based description
of collaborative work. The virtual machine which is defined by our paradigm,
serves as the basis for defining source code manipulation. The business ma-
chine is hence used here as a collaborative machine. In some sense it will



12.1 Towards Structured Collaborative Work 231

turn out that for collaborative work a very generic business logic is the best
tool. This generic business logic can be informally described as allowing all
possible changes to the data model. Now this final step is at the first place
a conceptual step, i.e., it is a thought experiment, which is supposed to help
our understanding. It does not necessarily mean that we work with this form-
based interface for creating our programs. Currently one could see a certain
tendency of interactions with editors becoming more and more form-based.
This is also due to the fact that structured editors are increasingly fashionable,
a well known concept but little used in the past. The main idea of this third
step is however to have a reference interface to the team server which allows
us to fix semantic questions, even if this reference interface may not be the
one we use. This is in parallel with many other systems, like databases, which
have one reference interactive interface, while most of the time the database
access will happen with other interfaces through application server. There are
different aims and priorities of collaborative work on the one hand and OLTP
(Online Transactional Processing) work on the other. One important service
of the data model to the source code paradigm will be simply the concept of
opaque identities itself, one of the main elements of our machine model. This
concept does provide the quantum leap of this source code paradigm over the
ASCII-based paradigm of many languages, especially because of the fact that
we can make use of a machine model that is a model of a global network, and
therefore supports immediately the notion of a global collaborative network.

It is not our aim in this chapter to reconstruct all the artifacts we have
introduced so far once more within the integrated source code paradigm. On
the contrary, we have presented artifacts which are easy to use within the
fully conventional framework of ASCII editors. For example, we have pro-
vided ASCII representations of many concepts like class diagrams, which are
usually today only presented as visual artifacts, only accessible by dedicated
tools. Note that this points on one property of the integrated source code
paradigm; it has to be seen in the context of dedicated tools. The goal is
here to get a tangible access to the reader. As soon as we fully apply the
integrated source code paradigm, we get a fully self-referencing, but also cir-
cular paradigm: the data model defines the language; the language defines the
data model. This is from the practical side indeed wanted, because it ensures
a maximum in integration, reuse and consistency. Yet from a reflective and
critical standpoint there is an argumentative circle. These concepts are indeed
old. In programming languages a similar approach is called bootstrapping. A
language translator is first provided manually or in another language, then a
language translator is written in the language itself and translated with the
initial translator.

The aim of this chapter is not to execute this bootstrapping procedure.
Our aim is rather to pinpoint on certain potentials in languages like DAL,
which are accessible through the use of such an advanced integrated source
code paradigm. This approach should enable the reader also to understand
the importance of this integrated source code paradigm. By looking at ar-



232 12 The Integrated Source Code Paradigm

tifact types like formcharts and DAL specification, we find well understood
artifacts, for which we can judge the potentials of such a modern source code
paradigm. We therefore will exemplify throughout the chapter, where one of
the new ideas of the integrated source code paradigm is especially applicable
to our method. However this new source code paradigm is also an exciting and
fundamental achievement in its own right, based on our form-oriented system
view and data model.

This approach is also very fascinating from the standpoint of theory build-
ing. In the way we use our data model for modeling documents, we obtain
a neat and clean theory of documents and document manipulation almost
for free, whereas in the conventional approaches the whole theory of compiler
construction is needed. We therefore call this paradigm the integrated source
code paradigm.

12.2 Structured Artifacts

We start our deliberations from the traditional view of source code. In different
areas of computer science we encounter various notions of program code and
therefore different approaches to formal languages. In the following we list
some traditional concepts of source code, ranging from low-level to high-level
models, which are motivated by their respective application areas.

• In constructing standard compilers for ASCII text files a program code is
a word over a subset of the ASCII alphabet. In that form the source code
is processed by the initial process of lexical analysis.

• After lexical analysis the source code is tokenized. For the subsequent
stages, i.e., the parser, source code is a stream of tokens, where each to-
ken is a semantic unit in itself. Particularly the identifiers, which denote
methods or variables, for example, are single tokens. The purpose of the
identifiers is solely to denote an identity; they are already opaque in this
sense, in contrast to literals of basic data types. The syntax has among
others the purpose to describe how to obtain a treelike data structure, the
parse tree, from the linear stream of tokens.

• In discussions on the semantics of programming languages one often uses
the concept of abstract syntax, as we have done by introducing DAL in
Chap. 7. In this concept a piece of code is a tree; the syntax has only
the purpose of describing the structure of the tree. Each non-terminal
represents a node type, and the right side of the rule denotes the structure
of the code. In abstract syntax we can use iterations in the rule. The
difference between abstract syntax and concrete syntax is that abstract
syntax does not have to care about delimiters, which are used to create
the treelike structure.

For our purposes the important property of formal languages is that they
are structured artifacts, amenable to automated processing. We introduce in



12.3 The Syntax Model Approach 233

this chapter a notion of formal languages which integrates better with this
method than the notions introduced above. We call formal documents like
programs structured artifacts. The essence of our approach is that structured
artifacts are modeled as ordinary data objects in our PD model defined in
Chap. 7. We define a formal language by ordinary types in our data model.
We call the data model which describes a formal language in this way a syntax
model. Since in this way the descriptions of formal languages are integrated
into the data model, we call this approach the integrated source code para-
digm. This integration extends therefore to the level of instances as well, where
structured artifacts are ordinary entity types besides other entity types.

The integrated source code paradigm is intended to support the program-
mer as a typical power user. A power user has different demands of his or
her tools than the naive user. Ease of use in the long run and even for com-
plex tasks is the priority. One group of power users has traditionally stuck to
ASCII-based terminals and command-line tools. Their demand obviously does
not lie in sophisticated visual representation. If a new source code paradigm
sets out to convince those power users that the emphasis must not be laid
on visualization, but on the superior structural properties of the typed source
code paradigm presented here, then this makes it more easily accessible to
powerful tools.

Our approach abstracts from one part of language processing altogether,
namely parsing. The most difficult task in understanding this approach may
therefore lie in the process of understanding that these parts of language pro-
cessing can be eliminated from the discussion by keeping the discussion on one
level of abstraction. It is also important to realize that many discussions on
semi-structured data like XML take place on this lower level, which does not
have to be considered here. Semi-structured data as well issues of parsing can
be seen at the same level of abstraction as memory organization in program-
ming languages and the physical layer in databases. In language theory the
memory model is basically a tape over an alphabet. It is one of the strengths
of modern type systems that the programmer does not have to care about
the actual memory layout of types used in the programming language. In the
same way our integrated source code paradigm gives us direct access to the
structure of artifacts, without having to worry about the representation.

12.3 The Syntax Model Approach

We said earlier that the first step in the integrated source code paradigm is to
view the structured artifacts as data in the data model. The traditional role of
the grammar, which expresses the syntax, is taken over by a data model. One
composite entity type from the data model is considered as representing the
language. All instances of this type are considered as words in the language.
Having understood the difference between this integrated source code para-



234 12 The Integrated Source Code Paradigm

digm and traditional languages we still want to use the term syntax. Hence we
call the data model describing a language the syntax model of this language.

Syntax Model for the Parsimonious Modeling Language

The syntax model of the PD modeling language is very condensed, as can be
seen in Fig. 12.1.

1

Role 
EntityType

RelationType

1

Fig. 12.1. The core syntax model of the PD modeling language

If we have a style format, for example for multiplicities, which has its own
data structure, then we can use model composition to add it to the syntax
model. See Fig. 12.2 for such an example from [104]. submodel and the model
union with the syntax model. Such extensions are therefore simply library
entries; the library can be extended.

Upper multiplicity
1

Role

EntityType

RelationType

1

1 Lower multiplicity

1 Number

1

Number
1

Upper multiplicity

1
Lower multiplicity

1 Number

1

Number
1

Role

Fig. 12.2. Multiplicity syntax model and union with PD syntax model

Comparison of Syntax Model and Meta Model Approach

The syntax model approach makes no sharp distinction between models of
languages and other data models. The metamodeling approach of many vi-
sual modeling languages can be subsumed under the syntax model approach.



12.4 A Closer Look at Languages 235

The metamodeling approach in the narrower sense considers a single prob-
lem instance of formal language theory, namely the self-application, hence the
prefix meta. The syntax model approach is from the outset not self-centered.
Syntax models are not primarily intended for other modeling languages. They
are intended for all formal languages. Since formal languages are in general
many different things, not just modeling languages, the model of a language
in general should not be called a metamodel, hence our name syntax model.

But even for the case of self-application the syntax modeling approach
allows a more advanced solution. The integrated modeling approach does not
need the strict leveling of the metamodeling approach. Due to this strict lev-
eling the metamodeling approach does not capture the relation between types
and instances. A precise capture of the type instance relationship approach
requires a standpoint, on which both types and instances are in the same
data model, and their relationship can be explained. This is a possible further
research direction within the syntax modeling approach.

The metamodeling approach is often motivated by likening the metamodel
to the model of a CASE tool; some metamodeling proposals came from groups
of GUI-based CASE tool developers. In this view the metamodel represents
objects in the tool. A particular flexible approach uses this concept as a basis
for generic visual tool generators [133] and can even offer advanced features
like changing the metamodel on the fly.

A further research direction is to look for a precise understanding in a
global community. In our view, all members of the community want to talk
about the same objects if they are talking about certain library functions, for
example. In the syntax modeling approach the most natural semantics are to
assume that one certain artifact resides in one place, in itself a unit system.
This idea does not exclude clever replication infrastructures of any kind, since
we understand a unit system as a virtual machine, not as a physical server of
a site.

The integrated source code paradigm will be the basis for a general theory
of tools, including the domain of graphical editor tools as well as structured
editors.

12.4 A Closer Look at Languages

An artifact has been characterized as an entity instance in the data model.
Our data model is in principle updatable; therefore artifacts can be updated
as well. Now the discussions in traditional language theory can be seen as
being restricted to constant objects as artifacts, in our terminology messages.
Similar to that, messages will play an important role in the integrated source
code paradigm as well. For example, the running program will usually be seen
as a message – it cannot be changed. Traditional languages can be embedded
into the data model. The part of the data model representing non-terminals
for this language is formed solely by composition. Identifiers usually form a



236 12 The Integrated Source Code Paradigm

single entity type. This also implies that even certain low-level checks are not
expressed in the syntax, e.g., that a type identifier is not used as a variable
identifier. In the abstract syntax of DAL we have used a notation with which
we were able to implicitly define several entity types representing identifiers.
Our abstract syntax notation then implicitly specified the aforementioned
rules, i.e., that a relation type identifier can be used only at appropriate
points.

12.4.1 Different Practices, Different Solutions

In the history of programming languages, the concept of declaration is recog-
nized as having led to considerable progress in efficiency. This is chiefly due
to the fact that through making declarations mandatory, a common error has
been eliminated, namely the erroneous introduction of a new variable due to
a typo. In the abstract syntax of DAL, we have demonstrated that one can
even support this context-sensitive concept conveniently and highly intuitively
within the language syntax itself.

The new source code paradigm brings new editing paradigms. The refer-
ence to a variable does not happen through typing in a dumb tool like the
editor. It rather happens by choosing an existing instance by an appropriate
tool, e.g., a graphical tool. The need for a declaration within the language
itself is no longer plausible. The intended safeguard is provided by the editing
tool of the language. Therefore languages for structured artifacts often have
no declaration concept. The fact that these languages are edited by tools
which are more sensitive to their semantics than a text editor compensates
for this. The different editing practices therefore lead to different language
design solutions.

12.4.2 Names as Comment

The use of tokenization is standard in computer languages, but in typical us-
age the tokens are not opaque identities, as we find in our data model, and
therefore in the syntax model. It is in the problem domain of name conflicts,
where the tokens show their nature as being plain text. In standard languages,
the same token can be used by chance by different developers in different mod-
ules. If these modules have to be used together, a so-called name conflict can
arise. The concepts for the solution of name conflicts are deeply intertwined
with the language design as a whole.

This is not so in our approach. We consider the textual names as simple
comments to the identities. The plain text view of a piece of code is on a
completely separate layer of abstraction. The editing of code is primarily the
editing of a data structure expressed in the primary data model. A textual
piece of code is not code as such, but may be viewed as a putative notation of
code. A textual notation has to be imported into the paradigm, by searching



12.5 The Integrated Source Code Paradigm 237

for identities of the given names. A name conflict arises at this import step,
which is separated from all other semantic aspects.

This has implications for the use of libraries, for example. An identity from
a library can be used effectively only by referring to the same identity. The
developer can of course search for the library function by a textual name.
However, establishing the reference can only happen through a tool which
already lives within the information paradigm itself, and which can therefore
use the identities within the data model.

12.4.3 Comment as Annotation

In the integrated source code paradigm comment is seen as an annotation of
the code. Since the code is a typed data object, comment is discernible from
the code by being of a different type. In our source code paradigm we want
to treat changes to comment and changes to code differently with respect
to versioning. A change in the comment of the code, even if it is comment
directly addressing coding issues, is not seen as a change in the program. This
is an improvement on the current situation with versioning tools based on the
plain ASCII format or on any file format containing code as well as comment.

The structured metaphor makes it also intriguing to think about more
structured approaches to comment. A first step is that comment is really
pinned to the regarding object, e.g., parameter descriptions are linked to the
respective parameter. This also eases somewhat the task of keeping comment
up to date, because the editing tool can inform the programmer if comment
is outdated since it has lost its referring code; indeed the tool has to do
so, because the type definition of the comment requires the comment to be
removed, if its referring object is removed.

12.5 The Integrated Source Code Paradigm

An artifact is a composite entity, representing all its parts. The composite
entity is updatable. Messages representing a possible state of this composite
entity are called versions.

The basic unit of source code management is the single artifact; a source
code repository is rather a management concept, which can be postponed for
the moment. An artifact is a unit system, which must have a transparent
history, and a transparent log. But an artifact has an extended concept of the
transparent history, which serves as the translation of the version tree concept
from well-known versioning tools. Not only is each previous state accessible,
but also for each previous state of a composite object a new successor state
can be created. Each such current state is a version; the leaves in the tree are
the current versions. The task of a source code repository would then be to
bundle such versions.



238 12 The Integrated Source Code Paradigm

12.5.1 Source Code Processing

The syntax model naturally considers source code as part of the data model
itself. Accordingly, the source code manipulation tools should be expressed in
the language itself. We want to use the notion of source code for structured
artifacts which are created by the user, in contrast to structured artifacts in
general, which may of course be the result of a generation process.

The natural concept of possible source code manipulations, which this
viewpoint offers, is to see a single step manipulation of an artifact as perform-
ing an arbitrary DAL operation on this artifact. The versions are identical
with the states in the history of the tool. What versioning tools call a delta
is here the DAL update between two states in the history. This concept is a
centralized view of source code editing. There is no such concept as a local
copy of an artifact. The editors are not tools working on a local state, but
terminal sessions working on the repository itself.

We assume the usual editing of the artifacts as being typically performed
by a form-oriented interface. Since a form-oriented interface allows only for
a statically fixed set of DAL side effects and client page specifications with
parameters, this means that such an editor defines a fixed set of DAL opera-
tions, which are assumed as the basic editing concepts. The natural editor of
an artifact type is the so-called generic editing tool, as explained later.

12.5.2 Identity and Structure of Source Code

Since the syntax model is a proper model, it inherits properties of the data
model. There is the possibility to have isomorphic models, with different iden-
tities, just like with every composite data type. A system of representatives
of isomorphic models can be found through induction over the structure of
models.

Isomorphic models can naturally appear in software development. Consider
an entity type representing an address as an example, developed by two pro-
grammers based on a detailed description. Their editing can yield isomorphic
models, but they are not identical since they both use fresh entity instances.
There is nothing problematic about this phenomenon, but it is worth men-
tioning. It is also important to note that if one uses existing artifacts, e.g., if
the programmers choose the same address type from a domain model, then
the types are identical.

Of course it would be possible to use the representative of the isomorphism
class for a type. But one should keep in mind that the use of the concept
structural identity is in any case possible. That is, even if the types are non-
identical, the programmer can of course use tools to check the isomorphism of
the types. In our understanding there is no possibility of defining an ultimate
concept of isomorphism anyway.



12.5 The Integrated Source Code Paradigm 239

12.5.3 Worldwide Libraries

The fact that our machine model is in principle a model of a global network has
an immediate application for our integrated source code paradigm: it should
be seen as a model of a global infrastructure for source code, a worldwide
web of libraries. The identity creation mechanism does yield worldwide fresh
identities for the pieces of code we create, which allows us to address them
uniquely in a global net of libraries.

12.5.4 Source Code Decomposition

We call the modularization of source code in different, separately editable units
source code decomposition. Source code decomposition as such is a motivated
and important type of modularization. There are many other modularization
objectives, which include semantic aspects. In many languages source code de-
composition is intertwined with other modularization mechanisms, like name
spaces. In our language, source code modularization is strictly separated from
other modularization mechanisms. The source code modularization concept
takes place solely on the syntax model level.

Submodel and Conservative Decomposition

A submodel is a substate of the model. We define the conservative decomposi-
tion of a model to be the decomposition into submodels, which together give
the whole model. The decomposition is not required to be disjoint; on the
contrary, entity types are typically contained in several submodels.

This method of decomposition has the property that by changing the struc-
ture of the decomposition, the resulting model does not change. It is not only
equivalent, it is also identical. This is a difference to other decomposition
mechanisms, as can be found in many languages, which not only lead to a
decomposition of the code, but also to a different structure of the code, even
if the code may be equivalent. Take as an example the functional decomposi-
tion in many languages, like C, Pascal, but also Java. By forming a separate
procedure or method from a block in a piece of code, we introduce not only
a decomposition of the code, but also a change in the semantic relation of
both pieces. For example, in Java it is not possible to place a body of a loop,
which changes local variables of primitive type, easily into a different method.
Furthermore the important concept of a file as a code unit is firmly linked to
the class concept. A class cannot be spread over different files.

The inverse of decomposition is the composition. The conservative compo-
sition of two models is the union of these models. The set of entity instances
is the union of the sets of entity instances of the submodels. Each entity in-
stance, which is part of both models, gets all the links from both models. The
composition of models is similar to the concept of graph union. The main



240 12 The Integrated Source Code Paradigm

difference is that models have a more complex structure due to the concept
of roles and the identities of relation types.

A generalization of our source code decomposition approach is to utilize
the history of the source code creation. Source code is created by a sequence
of syntax model editing steps. This log of the update of the syntax model
contains in itself the information of the syntax model. The log of updates will
be important in the context of roundtrip engineering, which we will discuss
in due course.

12.5.5 Replacement

A typical operation in conventional source code notions is the replacement of
a token by a subdocument, i.e., the structured variant of the editor’s search
and replace. In our data model paradigm there is an interesting focus shift,
since it becomes obvious that the same identity cannot appear in different
places, and there can be only different links to that identity. The replacement
works quite similarly: all links of this entity instance are redirected to some
other entity instance.

12.5.6 Formal Patterns

A formal pattern is an annotation of a piece of code with a syntax model
condition, which holds for that piece of code. Alternatively, it can be defined
as the unrolled invocation of an abstraction principle, but with possible sub-
sequent edits. This means that, given a generator, then the pattern is the
generator input and the pattern instance is the generator output, which is
integrated into the project and further edited. A formal pattern is assumed
to be used in a guarded environment, i.e., when editing a source code with a
formal pattern it is helpful to have an editor, which watches over the validity
of the pattern annotation.

Formal patterns are useful whenever one wants to use an abstraction for
the sake of consistency of the code, but one does want to see the resulting code
directly, nor the invocation of the abstraction itself. Patterns are therefore
characterized by the fact that the lower level is not hidden by use of the
high-level principle.

Formal patterns are related to styles, but formal patterns emphasize the
generative aspect of the abstraction over the aspect of enforcing structural
regularity.

Formal patterns are the best way to integrate generative technologies
which need subsequent editing, and are therefore subject to roundtrip en-
gineering phenomena, into the source code paradigm.

An example of a formal pattern is the record manipulation dialogue pat-
tern. This pattern is applicable in enterprise applications, e.g., for core data.
There are many data records, which may be inserted, updated, and deleted.
The record manipulation dialogue pattern is a generative pattern which yields



12.6 A Flexible Generic Textual Format for Data 241

a formchart for a given data type definition, and which contains the appropri-
ate subdialogue together with all typical dialogue constraints. Such a dialogue
pattern can of course be subsequently edited. Using the approach of a formal
pattern enables the developer to subsequently change, for example, the data
record definition, without losing all edits of the pattern. If, say, the developer
has deleted one input facility from the change dialogue, since the correspond-
ing field cannot be changed after it has been inserted, and if later the data
record is extended by a completely unrelated field, then the new field is just
inserted into the different forms and proper processing of the user input is
added, but the other code, including the deleted input facility, is not changed.

12.6 A Flexible Generic Textual Format for Data

We propose a generic textual format GTF for data representation, which al-
lows the discussion of general questions about textual representation. The
format enables different representations of the same content prior to knowl-
edge of the types.

A GTF file is a serialization of the state of a DAL model. A GTF file lists
all the links of the state, because they comprise the whole state. The entity
instances are represented by identifiers. The primitive types have the literals
as their identifiers. Since the entity instances are originally supposed to be
opaque, they could be random identifiers. For user-written GTF files the user
may choose symbolic identifiers. In the integrated source code paradigm we
have a general notion of annotating opaque entity instances with names. The
relation type of a link is encoded like an additional role of the relation type.

12.6.1 Normal Form

A document according to the textual format is in normal form, if all links of
the state are written on separate lines. Each link is a sequence of key/value
pairs. they are normal form is the list of all links, each tuple description is
complete, and in the same order.

// relation types with role names:

Address(person, name, street)

BusinessContact(customer, supplier)

// dump of a state

type=Address person=alice name="Alice" street="queen street"

type=Address person=bill name="William" street="capitol hill"

type=Address person=bert name="Bert" street="queen street"

type=BusinessContact customer=bill person=bert

type=BusinessContact customer=bert person=alice

The normal form is not unique, because the order of the tuples is not
unique. The order of the roles is not unique either. The textual format allows to



242 12 The Integrated Source Code Paradigm

reshuffle the information, including the type definition. The following example
GTF files will encode the same state.

12.6.2 Grouping

Links with common key-value pairs can be grouped. The common key-value
pairs are provided only once, they hold for all indented subsequent lines. In
this case the first, non-indented line does not encode a link.

type=Address street="queen street"

person=alice name="Alice"

person=bill name="William"

person=bert

type=BusinessContact customer=bill

type=Address name="Bert" street="fleet street"

type=BusinessContact customer=bert person=alice

This principle is recursive:

type=Address //encodes no link

person=bert name="Bert" street="fleet street" //encodes a link

street="queen street" //encodes no link

person=alice name="Alice" //encodes a link

person=bill name="William" //encodes a link

person=bert type=BusinessContact customer=bill //encodes a link

type=BusinessContact customer=bert person=alice //encodes a link

12.6.3 Syntactic Sugar

The principles of the format are independent from the concrete syntax chosen
here. The concrete syntactic elements used in the format here are: line break,
indentation for block structure, symbol ”=”, comment, white space.

The format could allow for defining other representations for key-value
pairs or groups thereof. There could be an option to define that ”A: B 0..1”
is mapped on ”id=A attrtype=B lower=0 upper=1”. This would allow to
define syntactic sugar, just as other languages allow to declare an operator
infix notation for binary functions.

The information content of the textual file contains obviously a total order
on all links, even across relation types. This could be used to encode ordered
lists in an extension of the format.

12.6.4 Application for the Textual Format of Formcharts

In the following we show examples of how formcharts can be described in the
textual format. Furthermore it shows how this description of the formchart
can be amalgamated with the data model description. The following listing
contains different groupings of the same formchart, which is a cutout from the
bookshop example shown in Fig. 12.3. These different notations are a direct
consequence of the generic properties of the textual format.



12.6 A Flexible Generic Textual Format for Data 243

LoginLink

Welcome

! loggedIn:Boolean

! customerName:String ViewCart
ShoppingCart

l

v s

Fig. 12.3. A cutout message storyboard of the bookshop example with custom
transition names

PageServer(id:pageserverID, source:ClientPage, target:ServerAction)

ServerPage(id:serverPageID, source:ServerAction, target:ClientPage)

Attribute(id:attributeID, source:Message, attributType:Type)

// a normal form

type=Pageserver source=Welcome id=l target=LoginLink

type=Pageserver source=Welcome id=v server=ViewCart

type=ServerPage source=ViewCart id=s target=ShoppingCart

type=Attribute source=Welcome id=loggedIn attributType=Boolean

type=Attribute source=Welcome id=customerName attributType=String

// grouping attributes, but not transitions

type=Pageserver source=Welcome id=l target=LoginLink

type=Pageserver source=Welcome id=v server=ViewCart

type=ServerPage source=ViewCart id=s target=ShoppingCart

type=Attribute source=Welcome

id=loggedIn attributType=Boolean

id=customerName attributType=String

// grouping attributes and transitions separately

type=Pageserver source=Welcome

id=l target=LoginLink

id=v server=ViewCart

type=ServerPage source=ViewCart

id=s target=ShoppingCart

type=Attribute source=Welcome

id=loggedIn attributType=Boolean

id=customerName attributType=String

// grouping attributes and transitions together

source=Welcome

type=Pageserver id=l target=LoginLink

type=Pageserver id=v server=ViewCart

type=Attribute id=loggedIn attributType=Boolean

type=Attribute id=customerName attributType=String

source=ViewCart

type=ServerPage id=s target=ShoppingCart



244 12 The Integrated Source Code Paradigm

12.6.5 Different Information Content

Conceptual data models have no linear structure. Serialization requires de-
cisions, and these decisions can be seen as additional information content in
the textual file. One additional information content in the given Format are
the identifiers for entity instances. We mentioned that this is a general phe-
nomenon of commenting annotation in the integrated source code paradigm.

12.7 Generative Programming

There are two main aspects to our discussion of source code: on the one hand
its character as a structured document, and on the other hand its character
as a manually edited document. The aspect of structured documents can be
discussed independently of the notion of source code as a manually edited
document. Structured documents can be especially created as the output of
generators.

There are a number of standard processing patterns on structured docu-
ments, which are interesting for automated as well as manual processing. This
mirrors the fact that source code paradigms like high-level programming lan-
guages are not only interesting as formats for manual editing, but also used as
output format for generators. The general aspects of manipulating structured
documents form therefore one aspect of our discussion. Generative program-
ming is a central concept in software development [72, 98, 99]. A compiler
or generator is just a function from the document type to a target document
type. The operations available for document manipulations together form our
data manipulation language.

12.7.1 Roundtrip Development

We want to distinguish between the required use of generators and the use of
generators as a mere organizational pattern for development. As an organi-
zational pattern we understand the case where the generator is used because
certain tools, e.g., the compiler, need the generated code in order to perform
adequate type checks etc. From a theoretical standpoint the generation pro-
cess could be deferred until after the development process, in these cases.
There are moreover many ad-hoc generators around where the programmer
has to edit the code unnecessarily, like in the case of many CASE tools. This
creates the need for roundtrip-engineering. In this case the generator use is
again an organizational pattern, and roundtrip engineering is avoidable by
placing generated code and customizations in separate code units. In object-
oriented languages method overriding is used for this purpose. It has to be
said though that such separation can be achieved without object orientation
as well.



12.7 Generative Programming 245

Required generator use on the other hand is the case where the program-
mer wants to edit the generator output for good reasons. We call this white-
box customization. The idea of a generator whose output is subsequently
edited creates a number of challenges for source code development and main-
tenance. If the programmer has to perform white-box customization, he or
she urgently needs tool assistance to cope with the case of later change in
the generator input, which requires repetition of the generation step and af-
terwards re-editing. The required tool functionality is a versatile roundtrip
engineering.

A typical case of required generator use will be discussed in Sect. 12.7.2.
The generator is used there to create a set of initial sources for deliberate
editing. In these cases the generator typically produces a high-level format, not
a low-level format. Roundtrip engineering is not just a task for tool developers;
it requires first and foremost a reflection on the intended semantics. Our
approach has the following features.

• We first of all de-emphasize the naming scheme. The user links customiza-
tions to opaque identities, not to generated compound names. These iden-
tities change exactly in the same circumstances as the generated names
would do. The identities of the generated code are annotated with a list
of as few elements of the generator input as possible, so that the iden-
tities have to change exactly if this list is changing. We call this list the
generation symbol table.

• In our approach all elements of the generated code can be offered for
overriding, depending on the preferences of the generator provider.

• This overriding is purely syntactical; its working can therefore be under-
stood purely syntactically as well. Note that both approaches to customiza-
tion, white-box editing as well as method overriding, make it hard to assure
system properties of the resulting system.

The infrastructure for roundtrip engineering works as follows. Looking at
a typical project, the repository can contain generated code by arbitrary gen-
erators, perhaps edited afterwards. For each of these generated artifacts, the
command which generates them is stored as well. This command can use any
elements of the repository as parameters. It is a deterministic DAL command,
i.e., immediate subsequent execution is assumed to give an equivalent result.
The repository then allows one to keep track of subsequent editing to the
generated code. This information is used for roundtrip engineering. A typical
activity of roundtrip engineering is the re-execution of a generation step. This
is followed by redoing the changes after the generation, if possible. For that
purpose the repository transmits all the following data to the generator: the
old generator input, the new generator input, the generation symbol table,
the log of the edits on the generated code.

The crucial task of the generator is to reuse entity type instances in the
newly generated document. This allows for the subsequent simple reappli-
cation of the edit to the generated document. For this reuse of entity type



246 12 The Integrated Source Code Paradigm

instances the generator technically refers to the generation symbol table; how-
ever, in fact this does not have to be done by the generator programmer, but
can be automatically achieved.

All edits which do not find an appropriate target in the newly generated
document must be reported to the user and the user has to decide on the
further processing. The generator can of course still try to help, e.g., by per-
forming pattern matching on the new versus the old code in order to propose
better roundtrip offers.

The roundtrip engineering considerations emphasize the aspect that source
code is manually edited. The valuable assets created by the programmer’s
work are therefore the actual manual edits. The first approximation notion is
therefore to view the source code as a log of the actual user input to the tools.
Here again it helps to view all tools as integrated; hence we assume that
the user operates on a single tool, which offers the integrated functionality
of all tools necessary for editing. This tool model is therefore the abstract
concept behind common integrated development environments (IDEs). Other
important concepts will be the concept of a document repository and a release
repository.

There is a strict separation between the concepts of source code structuring
and the actual semantics of the code. We can define source code manipulation
independently of the semantics of the source code format. We have seen that
there are a number of concepts which can be discussed solely on the syntac-
tic level, including composition and decomposition, as we experienced in the
concept of conservative composition. A source code unit is an instance of a
composite data type of a syntax model. A repository is realized by a com-
posite entity type, which we call a repository type. Its contents subsystem is
the syntax model of this repository. The log warehouse of the repository has
similarities to the data stored by a version archiving tool. The history data
model offers the function of retrieving earlier versions.

12.7.2 Generic Translators

A natural case of required generator use is found in the area of form-oriented
analysis. We can use a generic translator that takes a data model as an input
and creates the form-oriented description of a very generic access system for
a database with this data model. This generated access tool contains for each
entity type a list of all contained entity instances, and for each instance the
linked instances along the different associations. Furthermore it allows update
and delete operations. This generic system can be seen as a generic translation
of the data model concept into the world of interactive form-oriented systems.
The result of the generic translation process is, however, a very schematic tool
not yet customized. It is solely a reflection of the basic data structure. But
it may be a good starting point for developing the form-based system by
customization of this prototype. This way of proceeding is exactly what the
concept of roundtrip engineering is for. The developer not only will use the



12.7 Generative Programming 247

generator output as a convenient starting point, but may also be interested in
having the possibility to later change the data model, and having an immediate
reasonable update of the form-based description built on this data model.
One could think about using annotations on the data model in order to avoid
roundtrip engineering. But such solutions will always be expression of personal
taste. Those developers which want to straightforwardly customize the system
simply want to have a roundtrip engineering tool that meets their desires.

The generic editing tool has one natural application, and that is as the
editor in the sense of our integrated source code paradigm. If we think about
a tool for editing artifacts in a given format, then the generic editor is the
natural choice.

12.7.3 Integrated Development Environments

Many of the aspects mentioned here can be understood as a theoretical foun-
dation of functionality, which can often be found in modern integrated devel-
opment environments (IDEs). Such systems may offer support for refactoring:
a method name can be exchanged at once in the whole project. The version-
ing tool may be aware that this does not change the semantics and there-
fore not change the version. These features relate to the concept of names
as comment. Most IDEs have syntax-sensitive editors. These editors can fol-
low various paradigms concerning enforcement of indentation, color coding of
syntax, supporting naming conventions, etc. IDEs can also support the gen-
erative steps in software development, e.g., automatically translate, perform
unit checks, etc., and inform the project members of the status of the project.

These features of IDEs can be understood as instances of our pattern con-
cept. A pattern can be a structure or regularity of low-level code, which can be
explained as realizing a high-level concept. In this way IDEs realize aspects of
our high-level paradigm, but they do not hide the low-level paradigm. As one
can see by appreciating the plethora of existing IDEs, this comes at the point
where each single aspect of the high-level principle has to be implemented step
by step at considerable cost. Furthermore this approach can be said to hinder
the understanding of the fundamental principles by the single developer.

The crucial point, however, in which the integrated source code approach
has the potential to provide a leap forward compared with the conceptual
status of IDEs, is with respect to the concept of the power user. The integrated
source code paradigm supports a modular functional approach to source code
manipulation features. It motivates a more bare metal type of interface, but
also provides a higher conceptual clarity than current IDEs.



13

State History Diagrams

In this chapter we introduce a general notion of finite state modeling that
has a tight integration with other modeling views, especially with class dia-
grams. A state transition diagram in this new notion is called a state history
diagram [91], SHD for short. SHDs can be used in many circumstances in
analysis as well as design. They are especially favorable in cases where we
model a system by a finite state machine in order to capture a specific as-
pect, while the system as a whole is modeled by a class diagram as well. Such
models are very widespread, and the formchart is only one example, although
indeed a very good example. Other examples include the state of processes in
operating systems or the life cycle of components in application servers. We
give the operational semantics for general SHDs – not only for bipartite SHDs
as they are needed for example for formcharts – in order to clarify the general
character of the introduced semantics. The approach chosen here achieves a
sound basis for all the special constructs introduced in form-oriented analysis
in a rather short and lightweight way. This is achieved through maximal reuse,
mainly because we were able to fully reuse the semantics of class diagrams for
our new artifacts.

13.1 State History Diagrams and Class Diagrams

Our operational semantics for SHDs are based solely on the semantics of class
diagrams. The main idea behind SHDs is the following consideration:

• Class diagrams define the set of possible object nets, i.e., states over the
class diagram.

• Finite state machines define the set of possible traces for this state ma-
chine.

• Hence finite state machines can be defined as class diagrams, which allow
only directed paths as object nets.



250 13 State History Diagrams

SHDs are a semantic unification of class diagrams and state transition
diagrams; in fact they are a restriction of class diagrams. We show how SHDs
can be defined in the context of UML. As we will see, our semantics are based
only on the fundamental semantic concept of core class diagrams, which serve
as the semantic foundation in the modeling universe in which UML is located.

If we model a complex system as a finite state machine, this finite state
machine is typically only a part of the model. The behavior may depend
further on a classical data model. But in many cases the system behavior may
especially depend on the history of state transitions. SHDs give a convenient
general modeling tool for such systems. As a consequence SHDs allow the
specification of temporal constraints on finite state automata without any
need for further temporal formalisms, solely through the combination of the
already-defined concepts. Submit/response style interfaces will be a special
application case. Formcharts, the key diagrams of form-oriented analysis, will
then be a simple application of SHDs, though we will support it with our
own semantic framework. We then also give precise semantics to the dialogue
constraints introduced in DCL.

If a system is modeled with an SHD, the history or trace of the finite
state machine is a part of the actual system state. In other words, for each
state visit an instance of some class is kept in the actual system state, so
that these instances together form a log of the state transition process so far.
On this object net we can define constraints concerning the history of state
transitions. Hence we can define certain temporal constraints without having
to introduce a temporal extension into the constraint language.

In SHDs the log of the state visits is kept as a linked list of object instances.
The links represent the transitions between state visits. SHDs are based on
the idea of choosing the class diagram for this log in such a way that it is
isomorphic to the state transition diagram.

This is possible since STDs and core class diagrams can be modeled by a
similar metamodel. The basic metaclasses are nodes and connectors. In STDs
the nodes are states and the connectors are directed transitions. In core class
diagrams the nodes are classes and the connectors are binary associations.

An SHD is a special class diagram which can be read as an STD at the
same time. The consequence of this approach is that a single diagram describes
the state machine on the one hand and on the other hand serves at the same
time as a class diagram for the aforementioned history of state transitions.
Such a class diagram must, however, adhere to rigorous restrictions that will
be given in due course.

We adopt the following rules for speaking about SHDs. The diagram can
be addressed as an SHD or as an STD or as a class diagram, emphasizing the
respective aspect. The nodes are called state classes, the connectors are called
transitions and they are associations; their instances are called state changes.
A run of the state machine represented by the STD is called a process. The
visit of a state during a process over the STD is identified with an instance of
the state class and is called a visit. Hence a process is the object net over the



13.1 State History Diagrams and Class Diagrams 251

SHD. This object net is a path from the start visit of the process to the current
visit. This path is seen as being directed from the start visit. Each prefix of
the path is a part of the whole current path. This matches the semantics of the
aggregation. Hence all transitions are aggregations. The aggregation diamond
points to the later state. In the SHD, however, the transitions are not drawn
with diamonds but with single arrows. The associated state classes are called
source and target. We will use the SHD for the modeling of formcharts. If
a system is used by several clients, each client lives in its own object space.
Therefore the singleton property is local to the client’s object space. If one
were to model all clients accessing a system in a single object space, this could
be done by using several SHDs in a single object space. In that case one has to
use a slightly modified framework in which the StartState is not a singleton,
but there is one StartState instance for each run of the finite automaton.

13.1.1 Modeling SHDs as Class Diagrams

We have defined SHDs as a restriction of a class diagram, not as a new diagram
type. We now give a semantic treatment of this approach in the context of
UML. We obtained the definition of SHD’s as restricted class diagrams in the
following way: SHDs are class diagrams in which all elements are derived from
a special semantic modeling framework, the shdframework. Note that we use
model-level inheritance here. In the UML context a specification alternative
would be a package with stereotypes in which the SHD is defined by meta-
model instantiation, instead of model inheritance. But first we adhere strictly
to the economy principle, and argue that modeling is more lightweight than
metamodeling, therefore we use modeling wherever possible. Secondly our ap-
proach allows for a quite elegant formulation of the central SHD semantics,
namely that the object nets are paths. In Sect. 13.2 we will discuss the benefits
of our modeling approach.

However, we want to use the stereotype notation for pure notational con-
venience. For that purpose we introduce an auxiliary stereotype package in
which for each public element of our framework a stereotype of identical name
is introduced which has the metalevel constraint that its instances must in-
herit the framework class of the same name.

The shdframework is depicted in Fig. 13.1 together with the formchart
framework, which extends the shdframework.

In the shdframework we define a hierarchy for classes as well as for asso-
ciations as shown in Fig. 13.1. Indeed we make intensive use of the concept
of association inheritance, in other words the generalization of associations.
There have been long debates about the semantics of generalization of associa-
tions. We therefore prefer to define the semantics we use here. If an association
has n associations, which inherit it directly, then two objects can be connected
over only one of the inherited associations. The basic class is State and it has
an aggregation to itself called transition. The ends of transition have roles
source and target.



252 13 State History Diagrams

<<singleton>>

StartState
ModelState

<<singleton>>

CurrentEnd

State

ServerAction ClientPage

serverPage

pageServer

source

target

1

0..1

1

1

1

source

currentTarget

targetinitialSource

transition

0..1

1

1

state history 

diagrams

form charts

{xor}

{xor}

modelTransition

shdframework

formchartframework

Fig. 13.1. Frameworks for state history diagrams and formcharts

Before we explain how the framework introduces the desired semantics
to SHDs, we explain how it should be used in creating SHDs. As mentioned
earlier, all elements of an SHD must be derived from the following public ele-
ments in the shdframework. All state classes in the SHD must be derived from
ModelState and all transitions must be derived from modelTransition. The
marker for the start of the SHD is derived from StartState, and its transi-
tion to the first state is derived from the unnamed transition to ModelState.
Only these four elements of SHDs are public. All elements except the class
CurrentEnd are abstract, only the classes derived by the Modeler can be in-
stantiated. The singleton stereotype of StartState requires that the whole
class hierarchy derived from StartState has only one instance.

In a concrete SHD of course the generalization dependencies of SHD ele-
ments to the framework are not depicted. Instead we make use of the auxiliary
stereotypes mentioned earlier. Therefore we are entitled to change the graph-
ical appearance of stereotyped classes in the SHD as we will do especially in
formcharts.

The SHD approach is based on our powerful decomposition mechanism,
model union. This decomposition mechanism is simply non-disjoint graph de-
composition, i.e., graph decomposition with possibly a shared subgraph. Ac-
cordingly, the composition mechanism is graph union. A state-based aspect



13.1 State History Diagrams and Class Diagrams 253

is not modeled by a new diagram type, but exclusively by singling out a
submodel of the whole model.

We are showing here that if a system exhibits state based behavior then
we can pin this down to model elements. Here we concentrate on special cases,
where these model element are part of the plain data model. This is especially
useful for the analysis phase, where the model can be adopted.

13.1.2 Constraints on the Object Net

We now explain how the shdframework in Fig. 13.1 formalizes our constraints
on the process as the object net over an SHD. We show that the shdframework
enforces that the object net is a path.

For this purpose it is necessary that every visit but the start visit must
have exactly one predecessor, and every visit but the last visit must have
exactly one successor. The formalization of this demand poses two separate
problems: on the one hand the formalization of the constraint that each inner
node of the path must have exactly one predecessor and successor, and on
the other hand the exemption of the start and the end visit in exactly the
correct manner. The important problem of guaranteeing that the object net
is cycle-free is already achieved by the use of aggregations since aggregations
are defined to be cycle-free on the object net level.

We first address the problem of exempting the terminal nodes.
There are two flavors of formalization. First, one could exempt the start

visit from the general rule. The second way is to use a technique similar to
the sentinel technique in algorithms: an artificial predecessor to the start node
is introduced. This artificial visit is of a StartState class, which cannot be
revisited. We choose this second method, since it has the advantage that it
delegates the semantic details to auxiliary classes. Both classes StartState
and ModelState are derived from State. In the same way, the current visit
always has an artificial successor from the class CurrentEnd. All states created
by the modeler in the SHD shall be derived from ModelState. Each time a
new state A is visited, a new instance of A must be created. This new visit
gets the old current state as a predecessor and the current end as a successor.

We now discuss how the multiplicities expressed in the class diagram in
Fig. 13.1 give the desired semantics and address the second problem, namely
the formalization of the constraint that each inner node of the path must have
exactly one predecessor and successor.

We sum up these deliberations in the following

Theorem 13.1. The object net over an SHD is a directed path.

Proof. If two classes A and B are connected with an association r, then
in OCL for an object a : A the group of associated objects a.r is an OCL
collection, i.e., a multiset or bag. The multiplicity on the association end
specifies the number of elements of the collection, i.e., multiple occurrences



254 13 State History Diagrams

counted, not ignored. Objects associated by a derived association q < r are
always elements of the collection concerning r, hence a.q ⊂ a.r. This relation
is the key for the following multiplicity discussion; if an association end of an
abstract association has a multiplicity 1, then exactly one derived association
must have exactly one link.

As we have said about SHDs, each transition in the SHD must be de-
rived from ModelTransition in the diagram, and each model state must be
derived from ModelState. This implies that if a model state has several out-
going transitions, they are all derived from modelTransition. Hence for an
instance of this state only one of these transitions can be instantiated at the
same time due to the multiplicities for modelTransition. In this way the
shdframework introduces an implicit xor constraint on all outgoing transi-
tions, and vice versa on all ingoing transitions of a model state. Hence each
instance of a model state derived from modelState must have exactly one
predecessor and one successor. The xor constraints that are explicitly mod-
eled in the shdframework take care that an instance of a model state can have
one of the terminal nodes as a predecessor or successor. We will discuss this
for the StartState. The Xor constraint responsible for the treatment of the
start node is the Xor constraint that connects the modelTransition with the
transition from StartState to ModelState. This Xor constraint allows that
an instance of a model state can have either another model state instance or
a StartState instance as a predecessor. In the same way an instance of a
model state can have either another model state instance or a CurrentEnd
instance as a successor. The instances of StartState and CurrentEnd have
only one transition with multiplicity 1, so the instances of these states must
have exactly one link attached. Since both classes are singletons, the object
net over a formchart contains exactly one object with a single outgoing link,
exactly one object with a single ingoing link, and otherwise only objects with
exactly one ingoing and one outgoing link. Together with the fact that all
associations are aggregations and therefore the object net must not contain
cycles, it follows that the object net must be a single directed path. �

13.1.3 Formcharts as SHDs

Formcharts are bipartite STDs, which we will model now as SHDs. For this
purpose we introduce the formchartframework, which introduces specializa-
tions of the ModelState and ModelTransition elements of the shdframe-
work, as shown in Fig. 13.1. Formchart model elements must be derived from
the formchartframework elements, except the rather technical start elements,
which are still derived directly from the shdframework. Elements of form-
charts are therefore also derived from elements of the shdframework, though
indirectly. Hence formcharts are SHDs.

The formchart framework enforces by itself that formcharts are bipartite
and introduces the known names for formchart elements.



13.1 State History Diagrams and Class Diagrams 255

We introduce two subclasses to State: ServerAction and ClientPage.
All states in the formchart have to be derived from these classes. We derive
aggregations pageServer and serverPage between them from the transition
aggregation in order to enforce that formcharts are bipartite: in the formchart
all transitions must be derived from either pageServer or serverPage. The
usage of the framework for modeling frameworks is shown in Fig. 13.2. Only
the derivations of the states are shown, the derivations of the transitions being
omitted.

ViewCategory
WelcomeLink Welcome

Category

ServerActionClientPage

pageServer

ServerPage

formchartframework

StartState

shdframework

Fig. 13.2. A formchart is derived from the semantic framework

We assume again that each formchart framework element is accompanied
by a stereotype of same the name. Each stereotype introduces its own graphi-
cal representation. The << ClientPage >> stereotype is depicted by an ellipse,
the << ServerAction >> is depicted by a square. In the formchart, ellipses
and squares contain only their names.
The << serverPage >> and << pagePerver >> associations are depicted as
arrows, even though they are aggregations.

Fig. 13.3 shows a formchart and an example object net over this form-
chart, depicted actually below the formchart. The start state is omitted. The
object net is a path alternating between client states and server actions. If
a ModelState in the formchart has no outgoing transition, this state is a
terminal state for the dialogue; the dialogue is completed once the state is
entered.



256 13 State History Diagrams

WelcomeLink

Welcome

singleInstance:
CurrentEnd

ViewCategoryCategory

Fig. 13.3. The object net over a formchart is a path

13.1.4 Well-Formedness Rules for DCL

The semantics of SHDs given in Sect. 13.1.3 easily support the dialogue con-
straint language, DCL. One problem here is to give semantics for path expres-
sions. This is achieved in this chapter by two contributions. Path expressions
are generalized in Sect. 13.4 to arbitrary class diagrams. The semantics for
formcharts are defined in such a way that the path expressions in DCL map
exactly with our general definition of path expressions. Formcharts have new
constraint stereotypes for the dialogue constraint language DCL.

The important well-formedness rules concerning the bipartite structure of
form charts are already specified by the class diagram in Fig. 13.1. Now we de-
fine the well-formedness rules of the different constraint stereotypes introduced
in DCL. The placement of the DCL constraints is depicted in Fig. 5.6. In this
section we give the formal rules where the new DCL constraints are allowed.
These rules are well-formedness rules for formcharts. They are OCL meta-
model constraints assigned to the newly introduced stereotypes. Two kinds
of DCL constraints are placed on classes, namely client input constraints and
server input constraints. The other kinds of constraints are placed at the ends
of transitions.

Formally, we define stereotypes for constraints, similar to the stereotypes
<< invariant >> , << precondition >> , and << postcondition >> for OCL.
The new stereotypes apply to constraints at transition ends and are called
dialogue constraints. They are derived from the << dialogueconstraint >>

stereotype. They are all contained in the formchartframework so that they



13.1 State History Diagrams and Class Diagrams 257

can be used in a formchart. They conclude the allowed elements within the
formchart.

Two of the dialogue constraints, namely client output and server output
constraints, share important semantic properties, as we will see in Sect. 13.3.
This leads to the intuitive approach to make them specializations of a single
constraint type, which we will call << stateoutputconstraint >> . This con-
straint type can now be understood as a natural constraint already on the
SHD level. So the two types of output constraint in the formchart can be
understood as the natural dichotomy of this single SHD constraint due to the
bipartite structure of the formchart.

The dialogue constraint stereotypes have metamodel constraints as pre-
sented in the following. They primarily argue over the constrained element,
which can be accessed as constrainedElement in the metamodel.

enablingcondition

constrainedElement→instanceOf(AssociationEnd) and

constrainedElement.association→instanceOf(pageServer) and

constrainedElement.aggregation=none

clientoutputconstraint

constrainedElement→instanceOf(AssociationEnd) and

constrainedElement.association→instanceOf(pageServer) and

constrainedElement.aggregation=aggregate

serveroutputconstraint

constrainedElement→instanceOf(AssociationEnd) and

constrainedElement.association→instanceOf(serverPage) and

constrainedElement.aggregation=aggregate

flowcondition

constrainedElement→instanceOf(AssociationEnd) and

constrainedElement.association→instanceOf(serverPage) and

constrainedElement.aggregation=none

serverinputconstraint

constrainedElement.stereotype=ServerAction

clientinputconstraint

constrainedElement.stereotype=ClientPage

In the metamodel constraints for << serverinputconstraint >> and for
<< clientinputconstraint >> we use the fact that we have for each framework
class a corresponding stereotype which must be assigned to each subclass of
the framework class.



258 13 State History Diagrams

Informal metamodel constraints are as follows. Only one constraint of the
same stereotype is allowed for the same context. The numbers of flow condi-
tions must be unique. They must not be strictly ascending in order to facilitate
model union. For each ServerAction there may be only one flow condition that
is not numbered.

13.2 Discussion of Formchart Semantics

We have modeled formcharts by frameworks,i.e., the shdframework and the
formchartframework. The semantics presented are directly motivated by our
application domain; however, they are also novel operational semantics for
STDs in general, independent of the motivation presented. We outline and
discuss modeling alternatives in the following.

13.2.1 SHDs and Formcharts by Strict Metamodeling

As we mentioned earlier, a modeling alternative would be a pure metamodel
for formcharts. The most general method of introducing new diagrams in
UML is given by the metamodeling technique. We therefore could define the
formchart elements by strict metamodeling [18], i.e., purely as a framework of
stereotypes for metamodel elements of class diagrams. The intention of this
approach would be still to define formcharts (or more generally SHDs) as a
variant of class diagrams in such a way that it is guaranteed that the object
net is a path. The constraints expressed in our framework modeling approach
would have to be expressed within the stereotype description. A related topic
is the use of the composition notation. One could think of expressing certain
multiplicities in the framework implicitly by using composition instead of
aggregation. However, composition would be able to express only one direction
of the multiplicity at best; furthermore there are different opinions about the
exact meaning of composition. Therefore it seems more convenient to stick to
aggregation, and to use explicit multiplicities, as was done in the framework.

The diagram in Fig. 13.3 resembles a message sequence chart. However,
the diagram is completely different. Above the horizontal line are classes, not
instances. Below the line are instances, not method invocations.

13.2.2 Modeling Formcharts with State Machines

UML has its own diagram type for state automata called state machines.
State machines are based on David Harel’s statecharts [140]. However, state
machines have no operational semantics defined within UML, indeed no for-
mal operational semantics are part of the specification. Instead, operational
semantics are given by reference to a state machine that is described verbally.



13.2 Discussion of Formchart Semantics 259

The semantics of statecharts based on pseudo-code are given in [141]. Our def-
inition of SHDs has operational semantics based solely on core class diagrams,
the semantic core of UML.

One could model formcharts with UML state machines. For this approach
one has to drop the SHD semantics and hence loses support for temporal
path expressions. Nevertheless we present the alternatives in the following for
reasons of completeness. UML state machines model the behavior of objects
by modeling the life cycle of a single object as a finite automaton. There are
again two alternatives; we can model the formchart as a bipartite state ma-
chine or transform the server actions. The latter alternative means that each
page server transition will be transformed to as many statecharts transitions
as the targeted server action has outgoing transitions. In that case the flow
conditions would become guard conditions directly on the page; the server
actions do not appear. In the example of a login page, the page would have
two outgoing transitions with event submit, one of them with the guard con-
dition “password valid” the other with guard condition “password invalid,” as
shown in Fig. 13.4. The guard conditions have to be made exclusive in order
to prevent non-deterministic behavior. A variant would be to omit the self-
transition with the guard condition “invalid password.” However, there is a
subtle semantic difference between both variants. That is, in the first variant,
the history of state visits could have repeated adjacent visits of the login page
state, while in the later alternative there would be only one instance of this
state instead.

Welcome Login

submit

[invalid password]

submit

[valid password]

Fig. 13.4. A login subdialogue as UML state machine

The second major alternative would be to model the formchart as a bipar-
tite UML state machine. We need no compound states for formcharts, but we
would have to enforce bipartite structure. Server actions would be required
to have completion transitions that are triggered automatically upon comple-
tion as is known from activities in activity diagrams. The flow conditions in
formcharts can be mapped to guard conditions of the server action. However,
the flow conditions in our formchart semantics are exclusive since they are
mapped to elsif branches of an OCL condition. For the state machine model-
ing one has to make the guard conditions exclusive, otherwise the semantics
of state machines would prescribe non-deterministic behavior.



260 13 State History Diagrams

Except for flow conditions and enabling conditions, DCL constraints can-
not be mapped to guard conditions. This is due to the fact that the other
conditions like server output and client output constraints are in principle
“design by contract” annotations. These DCL conditions would have to be
mapped to pre- or postconditions of actions assigned with the transitions in
the state machine.

The fact that formcharts use only flat STDs in contrast to hierarchical
statecharts does not restrict the expressibility of formcharts due to the fact
that formcharts are coupled with an information model. Formcharts can be
easily combined with statechart notation if the statechart notation is inter-
preted as the visualization of parts of the session objects of the information
model.

A proposal for representing states by classes can also be found in the state
design pattern [119], which describes how an object can delegate its state
change to a state object. The object appears to change its state within a
finite set of states. The set of states is finite, since each state is represented
by a class. The pattern does not prescribe how to model a finite automaton
over the state instance set, but discusses procedural implementations. First it
proposes implementing the transitions in the so-called Context class using the
pattern. An alternative proposal is a table lookup. Both are non-equivalent
to the SHD model using associations to model state transitions.

13.2.3 Petri Nets

Petri nets are a state transition formalism based on bipartite graphs. Form-
charts resemble Petri nets due to the fact that server actions resemble Petri net
transitions. Petri nets as a finite state machine model are classically conceived
as being never in a state corresponding to a transition. The main difference
between Petri nets and bipartite state diagrams is therefore that the state of
a Petri net is not necessarily a single bubble, but possibly a compound state,
depending on the type of Petri net, e.g., a function from bubbles to numbers
for place/transition nets.

It is possible to give formcharts Petri net semantics. We have outlined how
to define the semantics of formcharts based on non-bipartite state machines.
Petri net semantics can be given in a similar way by defining only client pages
as places and introducing a Petri net transition for every path of length 2 to
another client page. Such Petri net semantics, however, involves only trivial
transitions, i.e., transitions with one ingoing and one outgoing edge.

13.3 Semantics of Dialogue Constraints

Dialogue constraints have been introduced as stereotypes for constraints. In
this section we give the semantics of dialogue constraints by giving for each
dialogue constraint a translation into parts of standard OCL constraints. As



13.3 Semantics of Dialogue Constraints 261

we will see, all DCL constraints are related to OCL method constraints in
their semantics. Accordingly, it is a reasonable choice to map them onto parts
of OCL preconditions.

For that purpose we have to make a construction that makes explicit and
utilizes the aforementioned unification of structural and behavioral features
of formcharts. We have argued that SHDs and therefore formcharts achieve a
unification of structural and behavioral semantics, since the relevant temporal
evolution of SHDs is already represented in the evolution of its object net, and
not just in the evolution of method calls. Now, in order to integrate this view
with standard behavioral modeling, especially with OCL method constraints,
we have to construct behavioral semantics which are a perfect mirror of the
structural features of SHDs. Hence behavioral semantics of SHDs have the
task to introduce methods which are called in a defined mandatory way in
connection with state changes. These methods serve as contexts for standard
OCL constraints, i.e., preconditions and postconditions. The DCL constraints
are then mapped onto parts of these constraints.

As in the case of the formchart framework, we first give a behavioral model
of SHDs and then give a more restrictive model for formcharts. The behavioral
model has the purpose to prescribe which method calls have to be performed
in the course of state changes. Partly these method calls can be enforced by
the specification tools of our UML notation. Partly, however, we again reach
the limits of UML semantics, this time for the behavioral models. As was
observed in [73], message sequence charts are unsuited for giving behavioral
semantics because they lack the expressibility to specify mandatory behavior.
Message sequence charts just specify example interaction sequences. Harel and
Damm [73] proposed live sequence charts with richer semantics, which also
allows for specification of conditions. We do not need this expressibility for
our purposes since in the semantics of formcharts mandatory behavior will be
unconditional, as we will see. Therefore we simply specify mandatory behavior
as pseudo-code, where necessary.

We define in the abstract class ModelState three methods, enterState(),
makeASuperParam(), and changeState(), which perform the handshake be-
tween subsequent state visits. The central method is the enterState() method
for each state, which has to be called on each newly inserted visit. For that pur-
pose the enterState() method is declared abstract in the ModelState class.
Each modeler-defined derived state must overwrite the enterState method.
The new visit has to be seen as being the conceptual parameter of its own en-
terState() method. ModelState replaces the parameter list, therefore we call
the ModelState instance a superparameter. Each state has a makeASuper-
Param() method, which must be called when the state is left, and which con-
structs the superparameter. The superparameter is passed to the enterState()
method in σ-calculus style [1]. This means that the enterState() method is
called on the superparameter without method parameters. State changes are
performed by a single method changeState() in the old state. The changeS-
tate() method of one state calls its own makeASuperParam() and the enter-



262 13 State History Diagrams

State() of the next state. makeASuperParam() and enterState() must not be
called from any other method. changeState() is defined final in ModelState.
In Java-like pseudo-code:

abstract class ModelState extends State {

// ....

abstract ModelState makeASuperParam();

abstract void enterState();

final void changeState(){

ModelState aSuperParam = makeASuperParam();

aSuperParam.enterState();

}

}

The control logic that invokes changeState() of the current visit is not pre-
scribed. However, the only way to change the state is by calling changeState()
of the current visit.

13.3.1 State Output Constraints

When we introduced the dialogue constraints, we characterized two of them as
the specializations of StateOutputConstraint, the single new constraint type
already available on the SHD level. The technical reason for SHDs having a
new constraint context is that this new context is conceptually placed on the
edge between two states, and it is therefore called transition context. In this
newly introduced transition context there is no self keyword, but the role
names of the transition ends can be used, especially the role names source and
target from the general transition. The role names refer to the ModelState
and hence to the corresponding message. The central added value of the state
output constraint is the fact that source as well as target are properly typed,
i.e., they have the ModelState as type at the respective end.

From the final specification of changeState() as given above it is known
that the precondition of enterState() is immediately executed after the post-
condition of makeASuperParam(), hence the system state is the same in both
constraint contexts. The state output constraint is intended to be executed
at that point in time, which can be seen as a single instant; therefore in
principle one could use one of the mentioned contexts instead. Semantically
therefore we map the state output constraint either onto the postcondition
of makeASuperParam() or onto the precondition of enterState(). However,
in both contexts there is less typing information available than in the state
output constraint. The state output constraint makes use of the fact that in
SHDs for each enterState() method the possible predecessors are known from
the diagram, and for each changeState() method the possible successors are
known. This is captured by the proper typing of source and target.

The more specific dialogue constraints defined for formcharts pay tribute
to the more elaborate model of formcharts. In the case of formcharts, the two



13.3 Semantics of Dialogue Constraints 263

classes of states have more specialized semantics than in the case of general
SHDs as we will explain in the following.

It is important to realize that state output constraints must not be mis-
taken for guard conditions known from state machines. Guard conditions in
state machines specify behavior. State output constraints are on the other
hand “design by contract” constraints. They constrain the possible imple-
mentations.

13.3.2 ClientPage Visits

ClientPage visits are the superparameters computed by the preceding Server-
Action makeASuperParam() and offered to enterState(). The ClientPage
methods, however, have to be seen as provided by a browser. enterState()
and makeASuperParam() of a ClientPage are therefore not individually mod-
eled, but conceived as being interpreted by a generic browser concept. This
concept is called the abstract browser. The browser therefore is a parametric
polymorphic concept. The named ClientPage methods are not implemented,
but interpreted by using type reflection on the ClientPage class.

The ClientPage class contains the information that has to be shown to the
user together with interaction possibilities, links, and forms. Since formcharts
are used in the analysis phase, the ClientPage superparameter is assumed to
be a pure content object. The ClientPage superparameter is a hierarchical
constant data type constructed with aggregations. As explained earlier, in
form-oriented analysis we consider an abstract browser as given. The analyst’s
view of the browser is a black box taking the content object and delivering a
state change to a ServerAction later. The presentation of the content to the
user and the construction of the method calls to the allowed server actions
according to the SHD is the task of the abstract browser. The analyst assumes
that the page offers a form for each outgoing transition of the ClientPage.
However, in a current ClientPage visit certain forms may be disabled. For this
purpose the ClientPage is assumed to have for each outgoing transition A a
flag formAenabled which specifies whether the transition is enabled. They are
specified by the enabling conditions.

13.3.3 Generation of ServerAction Visits

ServerAction visits are the actual superparameters that are given in a state
change to a ServerAction. The objects are created whenever the user triggers a
state change in the dialogue. The ServerAction superparameter is constructed
by the browser by using the ClientPage visit as a page description. Since
formcharts are, in contrast to concrete technologies like HTML, a strong typed
concept, the type description of the serverAction does not have to be contained
in the ClientPage visit, but the default parameters and the enabled flags have
to be provided. The abstract browser constructs the new ServerAction visit
from the user input.



264 13 State History Diagrams

The information model is updated by a side effect of the server action,
for which form-oriented analysis explicitly makes no strict specification re-
quirements. A typical specification of the side effect would be to specify a
single method call in the side effect. Business operations can be decomposed;
the top layer is formed by the side effects of server actions. Server actions
are executed atomically and are therefore multi-user safe operations on the
information model.

13.3.4 Enabling Conditions

The outgoing transitions in the class diagram for each ClientPage depict the
statically allowed page changes. Often a certain form should be offered only if
certain conditions hold, e.g., a bid in an auction is possible only if the auction
is still running. Since the page shown to the user is not updated unless the
user triggers a page change, the decision whether to show a form or not has
to be taken in the changeState() leading to the current ClientPage visit. The
enabling condition is mapped to a part of a precondition of enterState().

enterState()

pre: formAEnabled = enablingConditionA

pre: formBEnabled = enablingConditionB

Alternatively each enabling condition can be seen as a query that produces
the Boolean value that is assigned to formXenabled. Typically, the same con-
straint has to be re-evaluated after the user interaction. In the example above,
the auction may end while the user has the form on the page. Then the same
OCL expression is also part of another constraint stereotype, for especially
<< serverinputconstraint >> or << flowcondition >> .

13.3.5 Server Input Constraint

These constraints appear only in incomplete models or models labeled as
TBD, to be defined [158]. A server input constraint expresses that the Server-
Action is assumed to work correctly only if the server input constraint holds.
In a late refinement step the server input constraint has to be replaced by
transitions from the ServerAction to error handlers. The context of the server
input constraint is the ServerAction visit. Server input constraints are not
preconditions in a “design by contract” view, since server input constraint
violations are not exceptions but known special cases.

13.3.6 Flow Conditions

Flow conditions are constraints on the outgoing transitions of a ServerAction.
The context of flow conditions is the ServerAction visit. The semantics of flow



13.3 Semantics of Dialogue Constraints 265

conditions can be given by mapping all flow conditions of a state onto parts of
a complex postcondition on this.makeASuperParam(). This postcondition has
an elsif structure. In the if or elsif conditions the flow conditions appear
in the sequence of their numbering. The flow condition must be evaluated on
the system state before executing the state change; hence the flow condition
has to be transformed by adding the modal operator pre to all state accesses.

In the then block after a flow condition, it is assured that a visit of the
targeted ClientPage is the new Current State. In the final then block the same
check is performed for the target of the serverPage transition without a flow
condition.

13.3.7 Client Output Constraints and Server Output Constraints

Client output constraints and server output constraints are specializations of
state output constraints and live in the new transition context.

13.3.8 Path Expressions in DCL

As an introduction to the general concept of path expressions in OCL we
explain path expressions in DCL. Path expressions allow the expression of a
condition about the path that was taken up to then by the dialogue within the
state diagram. In formcharts a test on whether the dialogue has chosen a fixed
single path can be tested with the new along OCL feature. The path is written
backwards in time. The along feature simply tests whether the chosen object
exists. More generally constraints are important in which it is tested whether
the path has certain properties as long as it remaines in a subdialogue. Hence
the path has to be restricted to a subdialogue. The concept of formchart
features is viable in this approach. Formchart features must not be mistaken
for OCL features. The word feature is derived in the context of formcharts
from the requirements engineering community.

Path expressions that are restricted to paths allowed in a feature are writ-
ten in DCL by the feature name in square brackets. Formally this concept
is a shorthand notation. DCL path expressions are mapped to general path
expressions as introduced in Sect. 13.4. For this purpose, formchart features
are not just diagrams, but come along with a class definition. For each feature
diagram a ModelState with the name of the diagram is created with a tran-
sition to itself, again with the feature name. All model states in the feature as
well as the transitions shown in the feature are implicitly derived from these
two elements. This is made explicit in Fig. 13.5.

13.3.9 Discussion of DCL Semantics

We have given the semantics for DCL constraints by mapping them to OCL
pre- and postconditions. For that purpose we have introduced behavior into



266 13 State History Diagrams

A

S1

S6

S2

S4

B C

D

S3

S5

enabled:[subdialogue].a --> along()

A

S6

S5

D

sub form chart

decomposition

S1

S6

S2

S4 S3

S5

B C

A

D

Sub

sub

semantic as

state history diagram

enterstate()

boolean formAEnabled

pre: formAEnabled = ({oclIsKindOf(sub),{sub}}.a --> exists())

Fig. 13.5. Semantics of path expressions in DCL

our semantics for SHDs. In this section we want to discuss briefly an alterna-
tive model. As it turns out, it is possible to model DCL constraints as OCL
constraints of the stereotype invariant. As the authors of OCL state explicitly
in [314], OCL is ambiguous with respect to the question, at which point in
time an invariant must hold. In that respect it differs from Eiffel [219], where
invariants are specified to hold at each instant at which the instance is ob-
servable to clients. We can specify for our model that all OCL class invariants
must hold immediately after each state transition of our formchart. At this in-
stant we assume the superparameter of the new state to be fully constructed.
Astonishingly, we can now map all DCL constraints to invariants. Generally,
pre- and postconditions cannot be mapped to invariants. Since we have seen
that DCL constraints map easily to pre- and postconditions, it is at least re-
markable that such a mapping of DCL constraints to invariants is possible.
Indeed, these alternative semantics of DCL will be possible only because of
the unified character of our STD semantics. The key argument is that we can
give an OCL expression which can be used as part of an invariant, and as



13.4 Path Expressions 267

such specify that this OCL invariant is executed only for the current visit and
therefore only once for each visit. This condition is simply a check whether
the current visit is the currently last in the path. Due to the sentinel tech-
nique used in modeling SHDs, this can be recognized by checking whether the
succeeding state is the currentEnd:
self.target->isTypeOf(CurrentEnd)
The key technique in modeling a DCL constraint A as invariant is now the
conjunction of this expression with A. By doing so we find that A is evaluated
only for the current visit.

The technique shown above may have the advantage that no behavioral
model is needed for formcharts, but has also disadvantages, namely in context
with flow conditions. The result of flow conditions has to be stored in the state.

13.4 Path Expressions

We now define path expressions for collecting objects along the transitive clo-
sure of link paths, called gathering in the following. The notation is needed to
give semantics to the“along” notation of the DCL used for example in writing
enabling conditions during form-oriented analysis. However, path expressions
have a justification in their own right. We start with an unrestricted wild-
card notation for expressing path navigations. Consider the following OCL
expression:

A
�.C

For every arbitrary fixed object of the context type A the expression denotes
the bag of objects of target type C that are reachable from the context type
object along a path of links, i.e., not just directly connected objects, but
all reachable objects are gathered. Consider the example given in Fig. 13.6.
It shows the bag resulting from the application of the above expression to
a concrete object net. An object that is reachable along several link paths
occurs more than once in the bag, one time for each path. Only cycle-free link
paths, in the object net are considered, i.e., link paths, in which each object
is visited only once. This ensures finiteness of the result bag.

Theorem 13.2. A path expression specifies a finite bag.

Proof. By definition of the path expression there is a one-to-one correspon-
dence between the object occurrences in the result bag and the cycle-free
paths. There can be only as many cycle-free paths in the object net as there
are permutations of the objects. Hence the number of cycle-free paths and
therefore the number of bag elements is finite. �

With respect to a possible generalization hierarchy of the classes, only such
link paths are considered for which the links are instances of connected, but



268 13 State History Diagrams

strictly interchanging, associations in the class diagram. Therefore the object
aC3:C in the current example does not belong to the result set of the above
expression, because, following the link path, from the viewpoint of the start
object the connected object aB’:B’ is of type B and has no link to the object
aC3:C. The above expression has the same meaning as the following OCL
expression:

A
self.v.y→union(self.w.y)→union(self.x)

Recall from the latter expression that in OCL a multi-step navigation is a
shorthand notation for the repeated application of collect and therefore yields
a bag.

A C D

B’

B

x
y

z

v

w

aB1:B

aB2:B

aB’:B’

aC1:C

aC2:C

aC3:C

aA:A
y

y

y

z

v

v

w

w

x

aC1:C

aC2:C

aC1:C

aC2:C aC2:C

result bag

duplicate

Fig. 13.6. An example class and object diagram, together with the result bag of
the path expression *.C, applied to the only instance of Class A

The wildcard notation may be used straightforwardly for writing con-
straints on cyclic class diagrams based on aggregations, too. The semantics
remain the same, except that a path is only considered, if all aggregation links
point in the same direction. Consider the example in Fig. 13.7. The following
constraint yields the set of leaves for an object tree which is accessed through
its root node:

Root
�.Leaf→asSet

This expression has only non-trivial counterparts in UML. A notation like path
expressions is clearly needed. Cyclic class diagrams with aggregations are the



13.4 Path Expressions 269

backbone of proven object-oriented patterns, both from problem domains and
solution domains , e.g., the structural kernels of both the composite design
pattern and the organization hierarchies analysis patterns [117] are trees.

Node

Leaf InnerNode

<<singleton>>
Root

parent

parent

1

1

1..*
1..* {xor}

Fig. 13.7. UML tree definition

We proceed with the general notation for path expressions, which is sum-
marized in the following expression:

ContextType

{oclConstraint,{package.associationName,..}}.GatheringType

The path expression consists of a structured wildcard and the type of the
objects that are to be gathered. The structured wildcard is a constraint on
the link paths that may be followed to gather objects. The wildcard consist
of an OCL constraint and an association constraint which is a set of associ-
ation specifications. In a valid link path, every object must fulfill the given
OCL constraint. There are subtle typing aspects of this mechanism. The OCL
constraint of a path expression is not tight to a single context; it must be eval-
uated with respect to objects of possibly different types. This is not a problem
if all classes of the underlying class association path have a common super-
type and the OCL constraint is written in terms of this type. Otherwise the
expression must be made general enough by first questioning the type of the
object.

Furthermore, in a valid link path every link must adhere to the association
constraint. This constraint is a set of association specifications. A link in a
valid link path must be an instance of an association which is a generalization
of one of the associations specified in the association constraint. The modeler
specifies an association by giving its qualified name consisting of a package
name and the association name. If the model is not structured by packages,
only an association name suffices. Association names are unique in packages.
If the association specification is an empty set, the link path is not constrained
with respect to the links.

The structured wildcard is a powerful narrowing mechanism, e.g., to ex-
clude object net cycles from constraints involving path expressions. It is ex-



270 13 State History Diagrams

ploited later to give semantics to path expressions of dialogue constraint lan-
guage used in formcharts.

At least consider the first path expression in unrestricted wildcard nota-
tion on page 267. It is a shorthand notation for the following verbose path
expression.

A
{true,∅}.C

Semantics of Visual State Specialization

In Fig. 6.8 we have shown how an enabling condition based on path expres-
sions can be shown graphically by multiple specializations of a state in the
formchart, which have to be distinguished by apostrophes. This distinguishes
this kind of multiple specializations from the concept of multiple occurrences.
Now we have to give precise semantics to this method in the following way:
if a state occurs more than once in a formchart diagram, these occurrences
represent distinct anonymous subclasses of the state, called substates. If the
same system is specified with a formchart with only one representative of the
state, then whenever this state is visited an instance of the according substate
is instantiated. The parent state is effectively abstract since it cannot be in-
stantiated through the formchart operational semantics. Therefore the state
named S5 has to get path-dependent enabling conditions because for each of
its substates it can proceed only through one of the outgoing edges.



14

Semantics of the Data Model

The PD modeling language and DAL are based on the well developed rela-
tional theory, encompassing relational algebra and tuple relational calculus.
This theory provides semantics for relational operations like they are used in
SQL and DAL. The mathematical interpretation of the state of a PD model
was already discussed in Chapter 7. In this chapter therefore we will focus
on the temporal aspects of our system modeling approach. Furthermore we
discuss some alternatives to the basic PD model semantics and some related
aspects.

14.1 Semantics of the Temporal Model

The temporal model is important to give semantics to temporal constraints.
The temporal model has been sketched in the first part as a log file of the
system, in which all updates are stored. In this section we give the semantics
of the temporal model. This definition will be no extension of the data model,
i.e., we do not have to augment or change the static model. Instead, the
definition of the temporal model will be an application of the modeling method
introduced so far. The idea is that, basically, temporal expressions are reduced
to static state expressions. However, in this procedure we will have to assume
one type of temporal constraint to be fundamentally given, and this is the
permanence constraint. We will give a discussion and a comparison with other
approaches to temporal modeling afterwards.

14.1.1 The History as Log Warehouse

In order to give semantics to temporal properties we make a certain assump-
tion about the constitution of the systems which use our data model. For our
theoretical considerations it is helpful to assume that all systems keep a so-
called log of their update operations. This is, by the way, indeed the case for a
very important type of real machines, for which our model is intended, namely



272 14 Semantics of the Data Model

for databases. We assume that this log is stored according to our data model-
ing approach. The log is of course not part of what we usually call the system
state, so the logged system and its log are only subsystems in the combined
whole system, which we call the history aware system. A log contains for each
update operation the undo and redo information. In the log we perform only
inserts, no updates or deletes. Together with the fact that we store the log in
our data model, the log is actually what is usually called a data warehouse,
so we call it the log warehouse.

The log stores implicitly the information of all previous states. The model
of all states parameterized by a state identifier is called the history data model.
For a site s the history data model is gained from the data model of presence
by introducing the new entity type stateid, and increasing the arity of every
relation type by connecting it with stateid. Given a stateid, then the present
state graph for this stateid can be obtained by selecting all links connected
with this stateid. The history data model is a view of the log, using aggregation
functions.

14.1.2 Discussion of Temporal Formalisms

Temporal constraints are necessary to create a connection between differ-
ent states in the first place. It creates a structure in the state space, which
is connected with the constraints on the data model. Without temporal con-
straints, all states stay unconnected, and represent arbitrary contents fulfilling
the static constraints.

The history warehouse semantics are in our view the most intuitive formal-
ism for studying formal properties of temporal systems, if they are effectively
finitely bounded in time. Other approaches, like temporal logic, can be ex-
pressed in the history warehouse approach. They differ only in technicalities.
We will see that in other definitions there will be structurally equivalent steps,
so that one can conceive the different approaches as basically one idea in dif-
ferent notations. Temporal databases [289, 280] represent again a different
concept.

14.1.3 Executable Temporal Specification

Through the use of the history warehouse, we can identify an executable subset
of all possible temporal specifications. The history warehouse is an executable
model, although this does not imply that it is very efficient. Theoretically it
can be said that fixed relational queries of an appropriate SQL-like langauge
are polynomial in size of the state, hence this holds for the history warehouse
as well. However, in practical terms it may often be quite prohibitive. It has
to be kept in mind that SQL queries are often too complex as well, as soon
as they need too many joins. But having said that, we should not forget
that for small data sets as used in examples, such as a few dozens of tuples
per table, the history warehouse is fairly often executable. We therefore can



14.1 Semantics of the Temporal Model 273

easily identify executable temporal constraints as executable programs in the
history warehouse. This is an extremely valuable concept, since it allows us
to combine temporal modeling and testing, for example. Moreover, parts of
the history warehouse have in many applications a natural interpretation as
being some typical business logic, like bookkeeping.

14.1.4 Temporal Aspects of the Message Based Network Model

Our network model is non-deterministic concerning the runtime of individual
message transmissions, the user input and some of the site functionalities.
Assume we want to argue about the temporal development of a whole network.

Clocks may run differently in different unit systems. This can become
apparent for the timestamps of messages; a message can be sent later in the
sender’s local time than it was received in the recipient’s local time. Globally,
this can be sorted out if the local clocks run at least correctly in that they
are never reset to an earlier date. The local timed Web consists of clocked
subsystems with site clocks. A network message has an identity, a sender site,
a delivery time in the sender site time, a recipient site, and an arrival time
in the recipient site time. A message flow is directed from the sender to the
recipient. For all directed circles of message flows, there is at least one site in
the circle, where the arrival time of the incoming message is earlier than the
delivery time of the outgoing message.

A global time order is an absolute order of all locally issued timestamps.
The timestamps of two different sites may not be ordered, but for each single
clocked subsystem the timestamps are correctly ordered. A global time order
can be assigned ex post.

Each site has state identities which have a timestamp. Each state refers to
one executed transaction for one incoming message. This notion incorporates
the virtually serial view on transaction processing. The transaction execution
time and the waiting time of the message in the waiting bag can be subsumed
under the message transmission time. The State identities with greater times-
tamp are later states.

Each possible evolution of this network up to a certain point in time is a
net evolution trace for fixed sites, NETFS. This is an assignment of state sets
to the state identities fulfilling the semantics of the messaging paradigm. For
each NETFS, there is a bag of messages currently under way.

Each NETFS fixes this non-determinism. Arguing over different NETFS
at the same time is a contrafactual theory. The NETFS form a prefix tree.

Our network model is non-deterministic concerning the message runtimes,
the user input and some of the site functionalities. Each NETFS fixes this non-
determinism. Arguing over different incompatible NETFS is a contrafactual
theory. The NETFS form a prefix tree.



274 14 Semantics of the Data Model

14.2 Alternative Fundamental Models

14.2.1 Abstract Syntax Models

Our data modeling language is already very lean due to the use of constraint
libraries as the main tool of introducing modeling elements. However, the
reader interested in language design may ask whether the language is minimal.
There is no such thing as an objectively minimal language, since the definition
depends on the definition of the measure with which we compare different data
modeling languages. Hence the question whether a language is minimal may
be interesting, but in some sense there is no single answer to it.

The search for minimality is perhaps best characterized as an instance
of the economy principle (principle of parsimony) known as Ockham’s razor.
But we think the main insights in discussing parsimony are the gained equiv-
alences, i.e., proven possible reductions, not so much the actual reduction. Or
to make it even more precise, in performing simplifications of a theory, start-
ing from a complicated one and proceeding to simpler equivalent theories,
there comes a tradeoff point, where any further reduction comes at a cost.
Indeed it is our opinion that the usage of a minimal theory is often decisively
less abstract than the use of a less minimal, but appropriate, theory. That
is, the usage of the minimal theory can lead easily to models which basically
repeat in every model the semantic basics of the theory. As we will see, there
is besides the notion of minimality a notion of appropriateness. This notion
of appropriateness is in our opinion the notion of problem orientation. A re-
duction of a theory towards minimality beyond the point of maximal problem
adequacy is a loss of abstraction.

In fact the one central concept which has to be mentioned in this concept
is the very notion of termini. As we have mentioned earlier, collections of
term definitions are like libraries. This concept of libraries is the best key for
understanding the limitations of minimality discussions. If a minimal theory is
used, libraries emerge. But then at the surface of these libraries, the language
is as complicated as any other. This discussion could surely be elaborated
even further, but we leave it at this point.

Quintessentially, our syntax model can be called an abstract syntax model.

Universal Models

The DAL model which we have introduced is only one possible model, but
it has two properties, namely it is problem oriented and relational universal.
Relational universal refers to the fact that it belongs to a class of models
which are equivalent to the relational model in a certain sense. Problem ori-
ented refers to the fact that the model incorporates in its structure important
elements of the intended application domain, namely interacting distributed
transactional-relational persistent systems.



14.2 Alternative Fundamental Models 275

A relational universal model must be able to encode the relational model.
Note that models may look like generalizations, but may be simply equivalent.
This resembles a fundamental definition of potentially infinite sets as being
sets which are isomorphic to a proper subset. For every sufficiently powerful
modeling approach you can find a more general second approach, which clearly
contains the first approach as a part and is therefore a proper extension.
However, vice versa, under an appropriate notion of equivalence, you can
always interpret the latter approach as a proper part of the first approach as
well.

For example, the binary DAL modeling approach, which has been defined
to be the DAL modeling approach with only binary relations, is clearly a
proper subset of the general DAL modeling approach with arbitrary arities.
However, you can as well encode a higher arity DAL modeling approach in
the binary DAL modeling approach, by introducing every relation in a higher
arity model into a new entity type in the resulting binary model. Every role
in the higher arity model becomes a new binary relation with a multiplicity
1..1 at the former role’s entity type. The image of all higher arity DAL models
is a proper subset of the set of all binary DAL models, because this mapping
generates only binary relations, which have at least one multiplicity 1..1. The
mapping is, however, injective, since, as you may check for yourself, every
model and even the already binary models are mapped to a new model. The
mapping accordingly contains no information loss. Every model of the new
kind can be uniquely transformed back into a higher arity model. A certain
irritation may arise due to the fact that one will of course use the full binary
modeling approach, not just the subset, which is characterized as the image of
the mapping. Then one has to be aware that the mapping characterizes some
models as redundant, i.e., every model which is an image of another binary
model. The latter model is smaller, but contains the same information. The
last aspect of this example we want to turn our attention to is that the higher
arity modeling approach is of course itself subject to possible extensions. One
possible extension is the introduction of higher-order relations, as is done in
the HERM model [290]. Again this extended model can be modeled in the
higher arity model. Basically one has to say that the use of such a concept
is nothing more than a matter of taste. In most data modeling approaches
this concept is deliberately forbidden, because to every higher-order model
one can trivially find an equivalent non-higher-order model.

Problem-Oriented Models

The data model as well as the functionality model incorporate knowledge
about the application domain. The model is built along the structure of im-
portant target paradigms, chiefly SQL, i.e., both the data definition part called
DDL as well as the data manipulation part DML. The model aims mainly at
abstracting from notational peculiarities and offering a unified view of the
paradigms.



276 14 Semantics of the Data Model

The main thing which is not formally incorporated into the paradigm is
the underlying cost model. The relational structure, which our model shares
with SQL, can be said to be primarily motivated by some cost measure, not by
comprehensibility. Perhaps the most important cost measure in this context
is relative time, i.e., the execution time expressed relative to the speed of the
underlying platform.

The model language fosters expressions which lead to efficient execution on
the typical target platforms, chiefly modern relational databases. The decision
in favor of this paradigm is of course alleviated by the fact that it leads to
comprehensible models, and has turned out to be intuitive.

Our modeling language has been chosen on the one hand to be directly
translatable to SQL, and on the other hand to have an advantageous and
simple semantic basis. One goal of this model is to allow building a more
complex model on top of this model exclusively by the use of the inbuilt
modularization mechanisms. Furthermore the model does not aim at being
minimal in its primary presentation.

One novel idea is that the offered language kernel is indistinguishable from
a library invocation. Hence the code using the offered language kernel is not
tied to the fact that the offered language kernel is the actual language core. In
principle the language kernel can be substituted by another kernel, on which
the offered language kernel is implemented. This is of course another aspect
of the concept of abstract models.

14.2.2 A Reductionist Syntax Model

At this point we want to discuss a concrete alternative to the mentioned
model, which goes a step further towards minimality. In order to show one
of the possible reductions of the PD data model, we introduce the so-called
reductionist model. The rationale behind this model is that associations have
no type, and there is no special concept of roles. The concept of roles in the
PD model allows for relation types, which connect more than once to the same
entity type. More generally, it is helpful for entity types, which are connected
to one other entity type across more than one relation type.

The reductionist model uses only entity types and a single binary relation
between entities. The bundle of concepts comprising roles, relation types, di-
rections, etc., is realized by using sibling entity types. These are entity types
that are in a one-to-one relation to each other. There are again two natural
alternatives, either a peer-to-peer cluster of sibling types, or a central type
surrounded by sibling types.

The PD semantics can be implemented as a library on top of the reduc-
tionist semantics. A simple translation is to identify roles with sibling types.
Since the single relation in the reductionist model is binary, it is natural to
treat binary relations as special, so it is natural to restrict the discussion to bi-
nary PD models. A binary relation in the PD model is mapped to two sibling
types of the respective entity types, and the current set of links of the relation



14.2 Alternative Fundamental Models 277

is expressed by the set of links between these two sibling types. Relations of
higher arity have to be simulated basically by the relationship concept, which
was introduced as a constraint in the Chap. 7, i.e., they have to be expressed
as independent entity types. In the reductionist model it becomes fairly obvi-
ous that there is a certain redundancy in having identities for relation types
as well as for roles. Relation types can be replaced by using one of the sibling
types.

From the view of the reductionist model, the PD model becomes the flavor
of a mere pattern, e.g., the pattern that a sibling type of one cluster is used
only in relation to one sibling type of another cluster. The reductionist model
therefore makes it immediately plausible to explore other patterns. One very
interesting pattern for example makes use of the fact that a sibling type can
participate in more than one relation type. We call it commutativity modeling,
since it puts more emphasis on commutativity diagrams. Then a sibling type
would be used to represent a commutativity role.

The reductionist model has basically the same structure for all data mod-
els, making the different data models really rather constraints on a basic model
than structural descriptions. The reductionist semantics have an entity repos-
itory U and a general relation type G and constraints on them. Types are no
inbuilt language concept, neither for entities nor for relation types. Types are
realized by using one constant entity instance for each type. The entities of
that type are represented by all entities linked to that entity instance. It is
called entity identifier in the following.

Thus multiple relation types between two entities can be simulated by
using different sibling entity identifiers. In this way the single relation type
is sufficient. In the reductionist model the states are exactly mathematical
directed graphs.

A query to the reductionist data model contains in the FROM clause only
a list of names, no types. The FROM clause in DAL has been identified to be a
dependent product, whereby the attribute dependent refers to the enforcement
of typing. Accordingly, in the reductionist access language, the from clause
is simply the set or records, IU . The enforcement of typing is translated into
new join expressions in the where clause. For every variable v and its entity
identifier e we get a basic clause WHERE (v G e).

One can argue that there is one aspect about associative models which
gives a particular motivation for considering the reductionist model as the
basic semantics of associative models. This is the fact that in the semantics
of the relational access operations there is a concept of navigation from the
type to its instances. Take the query SELECT title FROM book. The query
is accessing all instances of the type book. This is a language feature (an
aspect of its semantics) that is in this form absent in many other languages.
Particularly, it is not a classic concept of object orientation. This may be the
reason behind the fact that object-oriented modeling languages, like OCL for
UML, do not have the same expressive power as SQL, since certain SQL op-
erations violate the paradigm in some interpretation. The reductionist model



278 14 Semantics of the Data Model

now captures in a natural way a fundamental property of associative models,
like the relational model and the IR model. The link between an instance and
its entity identifier expresses this navigability, and captures the most funda-
mental aspects of tables in relational databases: the accessibility of the whole
collection of current entity instances.

The concept of the reductionist model has interesting relations to the area
of semi-structured data models, which has received increased attention.

14.2.3 A Web of Paradigms

The concept of exchanging the language kernel which we earlier outlined leads
to a shift in the notion of what a theory should be. The very operational insight
that one can exchange the language kernel is an expression of a more general
vision, namely the vision to establish with a theoretical approach not only
a single paradigm but a web of paradigms. The choice of the basic building
blocks of our model is more a pragmatic one than a fundamental one. There
is no such thing as a fundamental model.

As an example, this holds true for the net-based metaphor. We could have
based the model on a kind of single server paradigm. All data could be assumed
to be in the same data space. We could give semantics to our net-based model
within this centralized model.

The use of the net-based model can be seen as an instance of a general
software engineering principle, which is in some sense the opposite to the
principle of data abstraction. It is the principle to base a certain functionality
on a library, which is as well as possible in its semantic guarantees. This makes
the software artifact as flexible as possible: it can be based on every library,
which offers stronger properties.

An instance of this property is the rule to use the weakest transactional
isolation level which is possible for specifying a given business rule. This spec-
ification of course always allows use of stronger isolation levels, where it comes
at no cost.

14.2.4 Alternative Minimal Paradigms

It is very informative to think about a number of other paradigms, which
one can easily devise, and which are very plausible as a fundamental model,
depending on the personal objective. One desire, for instacne, could be to
have no longer a distinction between entity types and relation types. A model
which would fulfill this, and which would combine this with the flavor of the
presented reductionist model, would be a model which actually uses the so-
called S-expressions known from LISP as the basic data model. We therefore
call it the LISP model. The model has a single type, which is a type of pair
records. Each pair has two entries, traditionally called CAR and CDR in
LISP, and an identity of course. These pairs are used to represent the links of
the data model. Because the pairs have identities, they can be used as entity



14.3 Discussion 279

instances as well. This model immediately allows for the so-called higher-order
relations we have mentioned earlier; since the links have identity as well in this
model, one can insert links which refer to a link. A possible argument for this
model, moreover, is the fact that the complexity of the state is proportional
to the number of entities, i.e., every element of a state over this model can be
identified by a single identity, while in the reductionist model the links can
be identified only by two identities. We prefer the reductionist model chiefly
because it follows from the outset some patterns which have been judged to
be good practices, e.g., separation between relations and entities.

Both models, the reductionist and the LISP model, introduce a distinc-
tion between both the partners in the link. This ordering is purely structural.
One may ask whether one can go without ordering. Indeed, this leads to two
possible models. The first model is the graph model, which uses plain mathe-
matical undirected graphs as states. In this model one has to find appropriate
workarounds for self-associations. However, a similar construction such as the
translation of roles in the case of the reductionist model will do. The obvious
translation of the undirected approach to the LISP model is a model which
uses unordered pairs with an identity.

14.3 Discussion

We close our considerations with a reflection on four topics which point at
characteristics of our application domain. We start with the concept of a
black-box model and discuss how this fits into our message based modeling
paradigm.

14.3.1 Black-Box Model of Enterprise Applications

Black-box modeling is a classical specification approach. A single enterprise
application installation can be modeled as a black box. This black box is an
automaton, which has an internal state. The exact nature and structure of
the state is not specified, only its behavior, i.e., its action and reaction. Ev-
ery implementation, i.e., realization of its internal state, which produces a
behavior as specified, fulfills the specification. A specification can, however,
be a proposed implementation, but typically on an abstract machine. We call
that an executable specification. Every implementation which behaves like the
proposed implementation fulfills the specification.

The black-box concept gives another intuitive argument why it is desired
to understand messages as being passive objects essentially different from
systems. That is, the goal of the behavioristic approach is to understand the
system through its communicative behavior, which requires that the messages
as data do not pose the same problem as the systems. The goal here therefore
is to perform a reduction: the system is reduced to an understanding of the
messages. Such a reduction is not achieved by models, where the exchanged



280 14 Semantics of the Data Model

messages are objects of the same type themselves, i.e., certain object-oriented
models.

There are different possible models for the behavior of a black box. We
use a message-based model, with optional extensions. In this message-based
model, time is only the concept of before/after, i.e., it is only an order, not a
quantity. We specify our systems as computational automata. A computational
automaton is specified by giving its state transition function. We specify sys-
tems by the state transition function:

system: message × state → state × listof(message)

In specifying the state transition function we have also to specify the state
type, which is a part of both the argument type as well as the return type
of the state transition function. In the operation of the automaton the state
transition function is repeatedly invoked and each consecutive invocation of
the state transition function receives the state from the return value of the
previous invocation and provides the new current state for the next invocation
of the state transition function.

The structure of the state transition function and its interpretation deter-
mine the kind of automaton under consideration. Especially, the remaining
parts of the argument type specify the input, and the remaining parts of the
return type specify the output. In our system model, the system receives a
single message, and reacts with a list of return messages. The model extends
naturally to a model of a net of systems. Each system has an address. A
message has a sender address, a recipient address, and a message body. The
net infrastructure moves messages from the sender to the recipient. For each
system in the net, which we will call node, the state transition function is
performed on each incoming message. The model includes a tacit assumption
of queues in front of each node, which, however, appear only in the form of
the simplifying assumption that each server is always idle at the moment it
receives a new message. A node is not obliged to send a return message to the
node which has sent it a message.

Clients in the system can be conceived as nodes, which allow the user to
see received messages and to create and send new messages. We will use two
well-defined concepts of clients in the future. The first will be a conceptual
net browser, which allows us to see and store all received messages and to
communicate with all nodes. The second client will be a conceptual session
browser, which supports a single, possibly endless session with a single node,
which is assumed to consist of alternating messages from the browser client
to the server, and then the server to the browser, and so forth.

14.3.2 Data Separability

Data separability means that data are separable from the functions and can
be accessed from multiple applications. The same contract data can be ac-



14.3 Discussion 281

cessed from the call center as well as from the accounting office. The notion
of integrity constraints can be defined with respect to this concept as such as
functionality, which is in this paradigm rather an aspect of the structure of
data than functionality in the behavioral meaning of the word.

We call a system data based if it supports the concept of the complete
report. The intuition is that the state of the current database is open to
inspection in its entirety. The complete report is in its simplest form the
printout of all tables, which requires the translation of opaque foreign keys in
random numbers.

In business modeling data separability is a concept, which occurs naturally.
The concept of the message system model offers an explanation, why this still
goes together with the concept of black-box modeling. The data separability
is a consequence of the fact that the system can be understood thhrough its
message communication with the outside world.

14.3.3 Transactions in Business Logic and Database Technology

A key concept in modeling enterprise applications is the concept of the busi-
ness transaction. A business transaction is an operation of a system, which
forms a single whole. Examples of transactions are the purchase of a flight
at the end of a selection process, or the transfer of money between two ac-
counts. A key property of a transaction is that even in a concurrent system,
the transaction appears to have exclusive access to the data during its op-
eration, i.e., during the operation of the transaction no other operation can
change the same data. We call this a virtual serial view on the data that is
available within a transaction. For modeling purposes, it is sufficient

Transactional databases use elaborated and sophisticated methods to en-
sure that the transaction can achieve this view, while still allowing the concur-
rent processing of many transactions. This service of transactional databases
comes at a cost: an ongoing transaction on the system may be aborted from
the database itself, if the database sees no possibility to achieve the virtual
serial view.

14.3.4 Enterprise Application Installations

In this last reflection we want to come back to the concept of nonfunctional
requirements with a special focus on the issues addressed by embedding spec-
ifications. Enterprise applications share important characteristics with other
data-centric applications. In contrast to office applications, for example, the
installation of an enterprise system for professional use is a heavyweight pro-
cess, which involves a commitment by the performing organization. In con-
trast, if you install a word processor and you write a letter, say, even an
important one like a contract, which is then sent and becomes effective, you
nevertheless can obviously remove the word processor, and often you can even
remove the text file, if the printed contract is stored. Enterprise applications



282 14 Semantics of the Data Model

are totally different. Setting up an enterprise application is not just more
demanding concerning hardware resources. In order to get the application op-
erational, you not only have to provide a considerable amount of core data,
which are different from the business rules and are stored as data, but which
nevertheless have rather configurationally character and hence are different
from the steadily streaming operational data. You also have to make a com-
mitment that this enterprise application is your operational database, which
has a status equally important as your accounting documents and hence has
a high-reliability demand. The concrete deployed instance of an enterprise ap-
plication is a singular, long-lived, and mission-critical concept. Such deployed
instances can be hard to move, in any sense of the word, from version to ver-
sion, from server to server, or even physically. The idea of extracting the data,
playing them on another place and having them run again is naive and not
achievable in practice. Important vendors pay a lot of attention to migrat-
ing and update concerns. We call a deployed instance an installation. Many
terms and concepts also relate in subtle ways to this fact, e.g., the distinc-
tion between the backend servers and the clients in an enterprise application.
That is, the clients are again rather of a volatile and lightweight nature as
the aforementioned office application, hence the client–server asymmetry is
not just created by technological demands. The notion of cluster computers
refers to the strategy of making server hardware units as lightweight as clients.
You have a complete layer, which is created by a varying number of identical
cluster hardware units. Only the layer as a whole is a heavyweight concept,
and cannot be simply dropped. The single hardware units in contrast can be
exchanged or augmented on demand.



15

Semantics of Web Signatures

This chapter formalizes the semantics of the reverse engineering tool JSPick
introduced in Sect. 10.2 and the semantics of the typed server pages technology
NSP introduced in Chap. 11.

First, the JSPick semantics are given as a pseudo-evaluation. Then the
notions of client page description safety and client page type safety are made
precise by the NSP coding guidelines in Sect. 15.2. The NSP coding guidelines
target the developer: correct NSP code is very natural and the NSP coding
guidelines are easy to learn. Finally, these coding guidelines are formalized in
Sect. 15.3 by a Per Martin-Löf-style type system.

15.1 Formal Semantics of Web Signature Recovery

This section formalizes the semantics of the core functionality of the reverse
engineering tool JSPick, i.e., the recovery of a high-level description of form
parameters. The semantics are formalized as a pseudo-evaluation. A pseudo-
evaluation runs a program with non-standard values instead of concrete values
for the purpose of static program analysis. The pseudo-evaluation technique
was introduced with type checking in the GIER ALGOL compiler [228, 227],
where a program is executed on types instead of values. Another early us-
age of the pseudo-evaluation technique is object code optimization [176] in
ALGOL compilers. Pseudo-evaluation has been taken up with other, more
sophisticated notions of program analysis [231] like data flow analysis [203] or
abstract interpretation [67], each with other emphases.

In JSPick pseudo-evaluation is preceded by parsing a program with respect
to an non-standard abstract syntax, called pseudo-syntax in the sequel, that
consists only of constructs that are relevant with respect to the desired pro-
gram analysis. The pseudo-evaluation is formalized as a semantics function,
i.e., in denotational style. The original paper on pseudo-evaluation [228] gives
an operational-style specification with respect to stack transformations.



284 15 Semantics of Web Signatures

15.1.1 The Pseudo-Syntax Specification

First the JSPick pseudo-syntax is given by an extended context-free gram-
mar. In the grammar used the production rules of an extended context-free
grammar may have regular expressions as right hand sides. Non-terminals are
underlined. The syntactic category that corresponds to a given non-terminal
is depicted in bold face. The JSPick pseudo-syntax consists of controls as basic
building blocks plus sequencing, if structure, if–else structure, switch struc-
tures, and loop. JSPick does not distinguish between completed and uncom-
pleted switch structures in the sense of NSP for the following reason: in NSP
it is a coding convention that all branches of a switch structure must be
ended by a break statement. But in JSPick this cannot be demanded, because
JSPick is designed as a tool for existing code. Fortunately it does not pose
a problem: a useful form type inference can be defined with respect to an-
other switch structure distinction. JSPick distinguishes between unique and
arbitrary switch structures. In a unique switch structure all branches end
with a break statement and the last branch is a default branch. All other
switch structures are arbitrary switch structures.

pseudo ::= (element)+

element ::= control
| if pseudo
| ifElse pseudo pseudo
| switcharbitrary (pseudo)+
| switchunique (pseudo)+
| loop pseudo

The usual types of HTML/XHTML controls are supported. Every control
node carries information about the name of the targeted formal parameter.
The set of names is not specified.

control ::= controltype name

controltype ::= text | textarea | password
| hidden | checkbox | radiobutton
| singleselect | multipleselect

name ::= n ∈ name

The types that are assigned to targeted formal parameters as part of a form
type are given by a little context-free grammar, too. A type can be either a
basic type or a basic type together with an array annotation. The basic types
differ from the control types of the pseudo-syntax. There is no distinction
between single select menus and multiple select menus. The various pseudo-
controls are introduced.



15.1 Formal Semantics of Web Signature Recovery 285

parametertype ::= basictype | basictype [ ]

basictype ::= TEXT | TEXTAREA | PASSWORD
| HIDDEN | CHECKBOX | RADIOBUTTON
| SELECT
| VARIOUS

15.1.2 The Semantics Function of Pseudo-Evaluation

The semantics of JSPick form type inference are specified as a semantics func-
tion (15.1) that maps a pseudo-syntax tree to a form type. A form type is a
finite partial function that assigns types to parameter names. Initially the
semantics function is applied to the entire content of a form.

[[ ]] : pseudo → name ||−→ parametertype (15.1)

In order to define the semantics function it is helpful to have an auxiliary
function (15.2) at hand that yields the contained basic type for every param-
eter type.

⇓ : parametertype → basictype

⇓ t =

{
t , t ∈ basictype

t′ , t = t′[ ]

(15.2)

The form type of a single control is defined only for the formal parameter
that is targeted by the control. If the control is a multiple select menu the
parameter is assigned the select basic type and an array annotation. If it is
a single select menu the parameter is assigned the select basic type only. In
all other cases simply the control type is assigned to the parameter, without
array annotation.

[[controltype name]] =

λn .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥ , n �= name

TEXT , controltype = text

TEXTAREA , controltype = textarea

PASSWORD , controltype = password

HIDDEN , controltype = hidden

CHECKBOX , controltype = checkbox

RADIOBUTTON , controltype = radiobutton

SELECT , controltype = select

SELECT [ ] , controltype = multipleselect

(15.3)



286 15 Semantics of Web Signatures

The if construct is semantically equivalent to an arbitrary switch structure
and the if–else construct is semantically equivalent to a unique switch struc-
ture in the way defined in Eqs. (15.4).

[[if p ]] = [[switcharbitrary p ]]
[[ifElse p1 p2 ]] = [[switchunique p1 p2 ]] (15.4)

Equation (15.5) defines how a form type is assigned to a unique switch struc-
ture. Note that free occurrences of the meta type variable t are implicitly
existentially quantified in the equations of this section. For a unique switch
structure it is ensured that exactly one branch is executed. This fact can be
exploited to possibly infer a single parameter type for a targeted formal param-
eter. Assume an arbitrary fixed name. If none of the branches yields a control
that targets that name, the switch structure does not, too. If all branches
always target that name with exactly one control the complete switch does
so, too. If at least one branch targets the name but it is not sure that it pro-
duces exactly one control, the switch targets the name with a control array.
Equally, if at least one branch targets the name and at least one branch does
not target the name, the switch targets the name with a control array. If all
branches target the name with the same kind of control, the switch targets the
name with this uniquely known control, otherwise it targets the name with
the special various control.

[[switchunique p1 . . . pn]] =

λn .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥ , ∀
1≤i≤n

([[pi]]n)↑
t , ∀

1≤i≤n
([[pi]]n) = t ∈ basictype

VARIOUS , ∀
1≤i≤n

([[pi]]n) ∈ basictype

t[ ] , ∀
1≤i≤n

(
([[pi]]n)↑ ∨ ⇓([[pi]]n) = t ∈ basictype

)
VARIOUS[ ] , else

(15.5)

For an arbitrary switch structure it is not certain that exactly one of the
branches is executed. Therefore the switch structure either does not target a
given name or targets that name with a control array. Apart from this, ar-
bitrary switches are equal to unique switches with regard to the form type.
Therefore Eq. (15.6) immediately arises from Eq. (15.5) by dropping the sec-
ond and third line.

[[switcharbitrary p1 . . . pn]] =

λn .

⎧⎪⎪⎨
⎪⎪⎩
⊥ , ∀

1≤i≤n
([[pi]]n)↑

t[ ] , ∀
1≤i≤n

(
([[pi]]n)↑ ∨ ⇓([[pi]]n) = t ∈ basictype

)
VARIOUS[ ] , else

(15.6)



15.2 Coding Guidelines for Typed Server Pages 287

A loop targets every formal parameter that is targeted by its body with a
control array.

[[loop p ]] = λn .

{
⊥ , ([[p]]n)↑(⇓([[p]]n)

)
[ ] , else

(15.7)

The form type of sequences of document parts is defined in Eq.( 15.8).

[[p1 . . . pn]] =

λn .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥ , ∀
1≤i≤n

([[pi]]n)↑
[[pi]]n , ∃ !

1≤i≤n
([[pi]]n)↓

radiobutton , ∀
1≤i≤n

(
([[pi]]n)↑ ∨ ⇓([[pi]]n) = radiobutton

)
∧ ∃

1≤i≤n

(
([[pi]]n) = radiobutton

)
t[ ] , ∀

1≤i≤n

(
([[pi]]n)↑ ∨ ⇓([[pi]]n) = t ∈ basictype

)
VARIOUS[ ] , else

(15.8)
Assume a sequence of document parts and that at least one of the parts

targets a given name. If there is only one part that targets the name and
furthermore the part targets the name with a single control then it is safe
that the sequence targets the name with this single control. If all parts that
target the name provide the same kind of control other than radio buttons,
then the sequence targets the name with an array of the given control. Radio
buttons are special, because together they provide a control. If a name is
assigned a radio button and an array annotation this means only that it is
not certain whether a radio button control is generated; it cannot mean that
possibly more than one control is generated. Therefore if all document parts
that target a given name provide radio buttons and at least one part is safe
to provide a single radio button control, the sequence targets the name with a
single radio button control. JSPick treats the generation of a one single radio
button as a correct alternative, too. This treatment of radio buttons once
more points up that JSPick is a tool for existing code: lots of web designers
deliberately use a single radio button this way as a kind of check box, though
this is not in accordance with recommended good practice, as in [220]. As a
last rule, if several parts target a given name with different kinds of control,
the sequence targets the name with an array of various controls.

15.2 Coding Guidelines for Typed Server Pages

There are two kinds of coding guidelines. The parameter guidelines which deal
with client page type safety, and the structure guidelines which deal with client



288 15 Semantics of Web Signatures

page description safety. The guidelines are declarative characterizations of
valid NSP code, and are informal descriptions of demands placed on NSP code.
The resulting notion of correctness can be checked statically and guarantees
client page type and description safety. The NSP parameter guidelines allow
the adaptation of typed programming discipline to the context of server pages
development.

In the discussion of coding guidelines passive NSP code is considered as
generated code. Such passive NSP code is a variant of XHTML code. It is
ensured that generated NSP tags will cause the generation of valid XHTML
eventually. The mapping of NSP tags to valid XHTML is given canonically.

15.2.1 Basic Parameter Guidelines

We now give the NSP parameter guidelines for formal parameters of basic
type. NSP distinguishes between basic types, array types, and form message
types. The notion of form message type is introduced in Sect. 15.2.3: a user-
defined type may be explicitly defined as a form message type; then NSP offers
tag support for gathering composed data of form message type. In NSP/Java
the basic types encompass the Java primitive types and every object type,
i.e., every user-defined type or arbitrary Java API type.

Formal Parameters of Primitive Type

For a formal int parameter either one type correct input control, hidden con-
trol, single select menu, or at least two type correct radio buttons must be
provided.

A form encompassing a type correct input control cannot be submitted
if the data entered by the user are not a number. Similarly a formal int
parameter implicitly requires an entry by the user. The necessary concept of
active direct input controls was explained in Sect. 11.1.3. A hidden control
may target a formal int parameter, as long as its contained expression has int
as type; such an expression cannot evaluate to a null object, because int is
a primitive Java type. For the same reason a single select menu may target
a formal int parameter. Alternatively a set of radio buttons may target the
parameter. It must contain at least two radio buttons. An int radio button set
or single select menu always produces a unique value, because of the concept
of NSP active single select controls introduced in Sect. 11.1.5.

A formal int parameter may be constrained to be targeted by an interactive
widget. The param tag has a widget attribute which may be set to required
for this purpose. If a widget is required, the targeting control must not be
a hidden parameter. Besides this exception the parameter guideline is the
same. Requiring an interactive widget is a powerful concept that allows for
the precise specification of a dialogue method as an editable method call
offered to the user by means of a web signature.



15.2 Coding Guidelines for Typed Server Pages 289

The int type is the only NSP/Java instance of the general notion of an
NSP direct input supported primitive type. Other language amalgamations
may support more primitive types by a direct input widget in a way that
follows the parameter guidelines just introduced.

The dual notion of an NSP direct input supported primitive type is that of
an NSP ordinary primitive type. The float type is an example of such a type.
For a formal float parameter exactly one type correct hidden control, a single
select menu, or at least two type correct radio buttons must be provided.

Formal Boolean Parameters

The Boolean type needs specific parameter guidelines. It is supported by an
instance of the check box mechanism as explained in Sect. 11.1.6. The Boolean
type is an NSP specific primitive type.

For a formal Boolean parameter either exactly one check box or one type
correct input hidden control must be provided. If the widget attribute is set
to required, the formal parameter must be targeted by exactly one check
box. It is not allowed to use other controls like direct input or a select menu
for targeting a Boolean formal parameter. We feel that, with respect to user
interaction, the Boolean type is inextricably connected to the notion of check
box and this is expressed by the current parameter guideline.

Formal Object Type Parameters

Every non-primitive Java type is termed object type. For a formal parameter
of object type at most one type correct hidden control, a single select menu,
or at least two type correct radio buttons must be provided. Very importantly,
it is not allowed to provide any control for a formal parameter of object type.
If no control is provided, the system will automatically fill in a null object on
submission.

For a formal parameter of object type the widget attribute may be set
to required, too. Then exactly one type correct single select menu or at least
two type correct radio buttons must be provided. It is not longer allowed
just to omit any kind of control: the purpose of the required widget attribute
is to ensure that an interaction capability is offered to the user. In general
there is no direct input capability for an object type and possible interaction
capabilities are single select menus or a set of radio buttons. However, as
opposed to formal parameters of primitive type, requiring a widget does not
guarantee valuable data on submission, because nothing prevents a data item
provided by, for example, a select menu from being a null object. This leads
to another kind of NSP object type.

Direct input supported object types are distinguished from ordinary ob-
ject types. Examples of direct input supported object types in NSP/Java are
the Integer type and the JDBC API type Date [316]. For a formal param-
eter of such type the above parameter guidelines are applicable, except for



290 15 Semantics of Web Signatures

the possibility to additionally target a parameter by the type correct input
control. Beyond this, the formal parameter tag has an entry attribute for such
types. This entry attribute may be set to required. Then for a formal param-
eter exactly one type correct input control must be provided. Furthermore
the system statically ensures that every targeting input control dynamically
ensures data entry. As discussed above, only this can prevent a null object
from being submitted.

Formal String Parameters

The Java type String is another example of an object type that is supported
by an active direct input control. Actually it has three such controls: the
usual input field, a password field, and the text area control. The parameter
guidelines are the same as the ones for types like Integer or Date, except for
the additional input controls that are handled in the same way as the input
field. The only subtle difference concerning the input controls has already
been described in Sect. 11.1.3: no null object will be transmitted at any time.

Furthermore, it can be specified that a formal String parameter must be
targeted by the specific password control or by the specific text area control.
The widget attribute is used for this purpose. If it is set to password exactly
one password field must be provided, and analogously for the text area widget.

15.2.2 Parameter Guidelines for Arrays

A web signature may encompass formal array parameters. A formal array
parameter may be targeted by an arbitrary mix of controls, as long as all
controls are type correct and valid with respect to the contained items’ type.
The valid controls for a formal array parameter encompass the controls that
are valid for a completely unconstrained formal parameter of the respective
contained items’ type. An unconstrained formal parameter is a parameter for
which no widget is required or specified and no entry is explicitly required.
Furthermore, type correct value check boxes and select menus are valid con-
trols for array parameters. The number of controls is not constrained for all
kinds of controls, except for radio buttons. If a radio button targets a formal
array parameter there must be at least a second radio button targeting the
same parameter.

For example, a formal int array parameter may be targeted by an arbitrary
mix and number of type correct input controls, hidden controls, single select
menus, value check boxes, select menus, and perhaps a set of at least two
radio buttons.

A formal parameter of array type is optional. If no control targets the
parameter the system will automatically pass a null to the dialogue method
on submit. It is not possible to give requirements for a formal array parameter.
The emphasis of the NSP array mechanism is on support for gathering array
data in forms. If a constrained dynamic data structure is desired, complex



15.2 Coding Guidelines for Typed Server Pages 291

message types and their respective facilities described in Sect. 15.2.3 may be
used.

NSP offers sophisticated support for gathering array data in forms. List-
ing 15.1 shows a form that targets a dialogue method that excepts an Integer
array x and an int array y. Nine input fields are generated for the parameter
x. Input widgets for Integer values are optional by default. If the user does not
enter a value into a field this field is just ignored. All fields that have received
valid user data together provide the submitted actual array parameter. If the
user does not enter any data a null object will be provided by the system for
the parameter x on submission. Another nine input fields are generated for
the parameter y. Input widgets for int values are required by default. The user
must enter valid data in all the fields, otherwise the form cannot be submitted.
The submitted array is guaranteed to have a length of nine.

Listing 15.1 NSP: gathering data for an array parameter

01 <form callee="N"><java>

02 for {int i=0; i<9; i++){</java>

03 <input type="int" param="x"></input><java>

04 }

05 for {int i=0; i<9; i++){</java>

06 <input type="Integer" param="y"></input><java>

07 }</java>

08 <submit></submit>

09 </form>

As a second opportunity it is possible to explicitly specify the index of
an array item. For this purpose the input field tag may contain an index
element. The content of such an index element must be a Java int expression.
If explicit definition of array element indexes is chosen, the specification should
be unique. Furthermore the specification should be complete. Array items
that have a redundant index or do not have an explicit index are attached
arbitrarily to the array.

Listing 15.2 is oriented towards the example from Listing 15.1. A loop
generates nine input fields for the parameter x. This time fields not filled out
by the user cannot simply be ignored. Instead of this null objects are inserted
at the specified positions. Another input field is generated behind the loop.
It has index 10. There is no input field with index 9 targeting the parameter
x. If the form is submitted, again a null object will be inserted as the ninth
element. Another ten input fields are generated for the parameter y. These
fields must be filled out. Again there is no input field with index 9 targeting
the parameter y. If the form is submitted, this will result in a dynamic type
error, because the system must fail to insert an appropriate value for this
missing element of primitive type.



292 15 Semantics of Web Signatures

Listing 15.2 NSP: gathering data for an indexed array parameter

01 <form callee="N"><java>

02 for {int i=0; i<9; i++){</java>

03 <input type="Integer" param="x">

04 <index> i </index>

05 </input><java>

06 }</java>

07 <input type="Integer" param="x">

08 <index> 10 </index>

09 </input><java>

10 for {int i=0; i<9; i++){</java>

11 <input type="int" param="y">

12 <index> i </index>

13 </input><java>

14 }</java>

15 <input type="int" param="x">

16 <index> 10 </index>

17 </input>

18 <submit></submit>

19 </form>

15.2.3 Parameter Guidelines for Form Messages

In NSP objects of user-defined types can be used as hidden parameters, select
menu items, and radio button or check box values. But NSP offers tag support
for gathering data of user-defined type in forms, the so-called NSP form mes-
sage mechanism. Input or selection capabilities for the single attributes of an
object or of a complex object net may be offered to the user. A special object
element that resembles the with construct in MODULA-2 [318] enables the
construction of data records. Similarly the group element of the XForms [106]
technology enables the construction of semi-structured data entered by the
user.

In order to be supported in the way described above a user-defined type
must be explicitly marked as a form message type. In a concrete language
amalgamation marking a user-defined type as a form message type may be
defined by a naming convention or as implementing a marker interface. In
general a form message is a record of attributes. The attributes are the fields
that are supported by the form message mechanism. The user-defined type
underlying a form message type may have auxiliary fields. Therefore, for every
programming language amalgamation a naming convention must be defined
for form message types that distinguishes attributes from auxiliary fields. In
NSP/Java the naming convention of the Java Beans [137] component model
is chosen. A form message type is a Java Bean. A form message type attribute
is a Java Bean property.



15.2 Coding Guidelines for Typed Server Pages 293

In this chapter we visualize form message types as class diagrams. These
diagrams are drawn within a defined perspective, which is a kind of specifica-
tion perspective in the sense of [116, 64]. The perspective abstracts away from
possible concrete naming conventions. Only form message type attributes oc-
cur in the diagram, i.e., auxiliary fields are not visualized. Attributes that
have form message type are visualized as associations; all other form mes-
sage type attributes are visualized as object attributes. The associations are
navigated and carry the attribute’s name as role name. No methods occur in
the diagrams. For instance, with respect to the NSP/Java naming convention,
a class denotes a Java Bean, object attributes and associations denote Java
Bean properties. In the diagrams all associations are compositions in order
to emphasize that all object nets gathered by the user are trees. That is, we
follow [237] where aggregations may form cycles, but constrain the respective
link relationship to be transitive and antisymmetric. Compositions are aggre-
gations with an additional constraint: an object must not be a direct part of
several composites. This means that, although it can be part of several com-
posites because of the transitivity of the composition relationship, it must be
identified with one unique composite object. All this amounts to saying that
object net instances of class diagrams with aggregations are only directed
acyclic graphs; and object net instances of class diagrams with compositions
are only trees.

A first introductory example is given by the form message type Person in
Fig. 15.1 and the form in Listing 15.3. The example is already sufficient in
order to state the NSP parameter guidelines for form message types. The form
targets a web signature that consists of a formal parameter customer of type
Person. Within the form data for an object net consisting of a Person object
and an Address object may be entered; on submit the respective object net
is constructed. More concretely, on submit a Person object and an Address
object are created. Furthermore, a pointer to the Address object is created
which automatically becomes the address attribute of the Person object. A
formal parameter of form message type must be targeted by at most one object
element. Like the control tags, the opening object tag has a param attribute
for this purpose. The object element contains controls and possibly further
object elements for the attributes of the targeted parameter. Note that the
NSP parameter guidelines apply recursively, i.e., from a form’s viewpoint a
form message type can be understood as a nested formal parameter type.

Person
name:String
age:int

Address
street:String
zip:int

0..1

address

Fig. 15.1. Example form message type



294 15 Semantics of Web Signatures

Listing 15.3 NSP: gathering form message type data

01 <form callee="target">

02 <object param="customer">

03 <input type="String" param="name"></input>

04 <input type="int" param="age"></input>

05 <object param="adress">

06 <input type="String" param="street"></input>

07 <input type="int" param="zip"></input>

08 </object>

09 </object>

10 </form>

11

12 // web signature of target

13 <param name="customer" type="Person"></param>

The form in Listing 15.4 targets a web signature that consists of a formal
array parameter customers, and the array items’ type is again the type Person
given in Fig. 15.1. A formal array parameter of form message type may be
targeted by an arbitrary number of object elements (Listing 15.4, line 3, line
10), as long as the NSP parameter guidelines are fulfilled recursively for each
object element. The single object nets may be explicitly indexed. An object
element may contain an index element for this purpose (Listing 15.4, line 4,
line 11).

An object element may be given a uniquely identifying name with the
optional id attribute (Listing 15.4, line 3, line 10). Then controls and ob-
ject elements for gathering data for form message type attributes can occur
anywhere. They have to reference the object element they belong to by its
identifying name. Input controls (Listing 15.4, e.g., line 19) and object tags
(Listing 15.4, line 7) have an optional in attribute for this purpose. Identi-
fying and referencing object elements provides a convenient way for allowing
arbitrary form layout. With object element nesting only, some desired occur-
rences of controls that contradict the rigid structure of layout elements could
not be realized. Note that the XForms technology even introduces decoupling
of controls from forms [106] for similar reasons. The respective attributes are
the id attribute and the ref attribute. Listing 15.4 yields an example, where
data for two object nets are gathered. Data for the attributes of each object
net are gathered in one table column in each case. For this purpose, the ref-
erencing mechanism just introduced is needed. Note that a solution based on
nested tables cannot achieve the same layout effect. If the data cells of the
given minimal example contain more information, so that the data cells of a
row have different heights, correct alignment is no longer ensured.

A formal parameter of form message type is optional. It is possible not
to provide an object element for it. On submit the system will pass a null
object to the receiving dialogue method. Again it becomes important that



15.2 Coding Guidelines for Typed Server Pages 295

Listing 15.4 NSP: gathering distributed form message type data

01 <form callee="target">

02 <table>

03 <tr><td><object param="customers" id="first">

04 <index>1</index>

05 <input type="String" param="name"></input>

06 </object>

07 <object param="adress" id="firstPart" in="first">

08 </object>

09 </td>

10 <td><object param="customers" id="second">

11 <index>2</index>

12 <input type="String" param="name"></input>

13 </object>

14 </td>

15 </tr>

16 <tr><td><input type="int" param="age" in="first"></input></td>

17 <td><input type="int" param="age" in="second"></input></td>

18 </tr>

19 <tr><td><input type="String" param="street" in="firstPart">

20 </input>

21 </td>

22 <td></td>

23 </tr>

24 <tr><td><input type="int" param="zip" in="firstPart"></input>

25 </td>

26 <td></td>

27 </tr>

28 </table>

29 </form>

30

31 // web signature of target

32 <param name="customers" type="Person[]"></param>

the notion of form message type attribute is subsumed under the notion of
formal parameter. For example, the first object element in line 3 of Listing 15.4
possesses an object element for the Address attribute in line 7, but the second
object element in line 10 does not possess an object element for this attribute.
Very importantly, though a formal parameter of form message type is optional,
this is not carried over to its contained attributes. An object element may not
be provided, but if it is, the NSP parameter guidelines apply to the contained
attributes; for example, an int attribute would be required.

For formal parameters data entry may be specified as required with the
data attribute (Listing 15.6, line 2). For a parameter of form message type
this enforces that exactly one object element is provided for it.



296 15 Semantics of Web Signatures

The fact that formal parameters of form message type are optional enables
the support of cyclic user-defined data in forms. The form in Listing 15.5 tar-
gets a web signature that consists of a formal parameter of type PersonList.
The type PersonList, which is a dynamic data structure, is given in Fig. 15.2.
In the example form input capabilities for three list elements are given. On
submit an object net of three list elements is created. For the next pointer of
the third element a null object is filled in. Dynamic creation of input capa-
bilities for dynamic data structures in a statically type-safe manner is possi-
ble by recursive definitions of dialogue submethods, which are introduced in
Sect. 11.2.2.

PersonList
name: String

0..1 next

Fig. 15.2. Example cyclic form message type

Listing 15.5 NSP: gathering data for dynamic data structures

01 <form callee="target">

02 <object param="customers">

03 <input type="String" param="name"></input>

04 <object param="next">

05 <input type="String" param="name"></input>

06 <object param="next">

07 <input type="String" param="name"></input>

08 <object param="next">

09 <input type="String" param="name"></input>

10 </object>

11 </object>

12 </object>

13 </object>

14 </form>

// web signature of target

<param name="customers" type="PersonList"></param>

NSP defines a fine granular mechanism for putting constraints on the
attributes of user-defined data. For this purpose a parameter element that
defines a formal parameter of form message type may contain constraints ele-
ments. Each of the constraints elements must uniquely refer to a form message
type that is involved as a part in the definition of the formal parameter type.



15.2 Coding Guidelines for Typed Server Pages 297

A constraints element contains a param element for every attribute of the
form message type it refers to. The param element can be used to pose on
the attributes one or several of the constraints that have been introduced in
Sect. 15.2.1:

• data=required
• widget=required
• widget=password
• widget=textarea

The mechanism is not recursive. The param elements of a constraint spec-
ification must not contain further constraints elements.

Listing 15.6 gives examples of constraints on user-defined data attributes.
Consider the form message type given in Fig. 15.3. Again it is PersonList – as
in Fig. 15.2 – but this time the type’s attribute has a form message type. The
attribute’s type is Person, which has already served as an example (Fig. 15.1),
but this time the multiplicity of the address association has changed from
0..1 to 1, which means that the address attribute is required this time. In
Listing 15.6 a formal parameter of type PersonList is defined. The constraint
specification in line 3 to line 6 means that the person attribute is required.
That is, whenever an object element for gathering data for a list element for
the actual parameter is generated, it must contain an object element for its
person attribute. There is no additional constraint posed on the next attribute.
It must be optional, because it forms a cycle in the class diagram. Further
constraint specifications ensure, for example, that for every Person object,
the user has to enter a name, a street, and a zip code. Note that it would
not be sufficient to constrain the street attribute and zip attribute of the type
Address to be required in order to achieve this (Listing 15.6, line 13, line 14).
The address attribute of the type Person must be required for this purpose,
too (Listing 15.6, line 10). Without requiring the address attribute, the whole
address is optional. Requiring only street and zip code just enforces that these
are required in the case when an object element for the address is actually
generated.

PersonList

0..1 next

Person
name:String
age:int

Address
street:String
zip:int

1

address

person1

Fig. 15.3. Example complex form message type



298 15 Semantics of Web Signatures

Listing 15.6 NSP: constraints on form message type attributes

01 // web signature of target

02 <param name="customers" type="PersonList" data="required">

03 <constraints type="PersonList">

04 <param name="person" data="required"></param>

05 <param name="next"></param>

06 </constraints>

07 <constraints type="Person">

08 <param name="name" data="required"></param>

09 <param name="age"></param>

10 <param name="address" data="required"></param>

11 </constraints>

12 <constraints type="Address">

13 <param name="street" data="required"></param>

14 <param name="zip" data="required"></param>

15 </constraints>

16 </param>

15.2.4 Document Structure Guidelines

The NSP coding guidelines for ensuring client page type safety have been de-
scribed in Sects. 15.2.1 to 15.2.3; we now complete the discussion by describing
the remaining coding guidelines concerning client page description safety.

The first basic structure guideline demands that an NSP always only gen-
erates well-formed XML. The NSP document must be a well-formed XML
document and the Java block structure must be compatible with the XML
block structure. The latter means that for every XML tag the corresponding
dual tag must occur in the same block; however, as a necessary exception
to this the Java tags are ignored. Java tags must be considered merely as
switches between the programming language and the markup language with
respect to the document structure. In technical terms Java opening and clos-
ing tags are go-betweens of different lexical states. This can be reformulated
more concisely in the following way. The document must be well-formed XML.
Then the Java tags are ignored, and instead every Java block is considered a
new document element. The document in question must be well-formed with
respect to the resulting element set.

The second structure guideline demands that an NSP always only gener-
ates valid passive NSP/Java code. This means that an active NSP document
fragment must only generate valid content elements with respect to its di-
rectly encompassing tags. Passive NSP code is essentially XHTML except for
the following differences:



15.3 Formal Definition of the NSP Type System 299

• some element properties are supported by content elements instead of at-
tributes;

• some elements, e.g., the form element and the control elements, are mod-
ified;

• some new elements are introduced, e.g., the param element and the call
element;

• some content elements are not required, though their counterparts are
required in XHTML.

The first three differences pose no problems. The modifications introduced
are resolved when the final page, i.e., the XHTML page that is sent to the
browser, is generated. The fourth difference is discussed in the sequel. The
coding guideline must be discussed with respect to the finally called page.

In XHMTL [304] some elements require that a certain kind of content ele-
ment appears at least once. In NSP these demands are dropped for pragmatic
reasons, not for technical reasons. For example, in XHTML a list must contain
at least one item. A table must contain at least one row. A table row must
contain at least one table data cell. A select list must contain at least either
one option or one group of option. However, most of these constraints are ar-
tificial, because browsers can, and current browsers do, cope with violations of
these constraints in a naturally sensible way. For example, lists without items,
tables without rows, and table rows without data cells are just not displayed.
Moreover, some of these constraints are ineffectual. For example, although an
item is required for a list, it is not required that a list must not be empty.

15.3 Formal Definition of the NSP Type System

In this section the semantics of the typed server pages technology NSP are
made more precise. A Per Martin-Löf [206, 207, 233] style type system is
given to specify type correctness for a crucial subset of NSP. The NSP coding
guidelines in Sect. 15.2 give an informal explanation of NSP type correctness.
They are easy to learn and will help in everyday programming tasks, but may
give rise to ambiguity. A precise description of the static semantics of NSP
languages is desired. The formal Core NSP type system provides a succinct
precise definition at the right level of communication. A formal type system
definition makes it easier to adapt results from the vast amount of literature
on type systems to the NSP approach, especially concerning type inference
and type checking algorithms.

We formalize the type system of Core NSP, which is the amalgamation of
NSP concepts with a minimal imperative programming, which encompasses
assignments, command sequences, a conditional control structure, and an un-
bounded loop. The tag set of Core NSP consists of the most important ele-
ments for writing forms as well as some nestable text layout tags. The pro-
gramming language types of Core NSP comprise records, arrays, and recursive



300 15 Semantics of Web Signatures

types for modeling all the complexity found in the type system of a modern
high-level programming language. The web signatures of Core NSP embrace
server page type parameters; that is, higher-order server pages are modeled.
Tags for server-side calls to server pages belong to the language; that is, func-
tional server page decomposition is modeled.

15.3.1 Core NSP Grammar

An abstract syntax of Core NSP programs is specified by a context-free gram-
mar. In the grammar non-terminals are underlined and terminals are not em-
phasized. This is in contrast to BNF standards like [167] or [70]; however, it
fosters readability significantly. Every non-terminal corresponds to a syntactic
category. In the grammar a syntactic category is depicted in bold face. A Core
NSP program is a whole closed system of several server pages. A page is a
parameterized core document and may be a complete web server page or an
include server page.

system ::= page | system system
page ::= <nsp name=‘‘id"> websig-core </nsp>

websig-core ::= param websig-core | webcall | include
param ::= <param name=‘‘id" type=‘‘parameter-type"/>

webcall ::= <html> head body </html>
head ::= <head><title> strings </title></head>

strings ::= ε | string strings
body ::= <body> dynamic </body>

include ::= <include> dynamic </include>

There are some basic syntactic categories. The category id is a set of labels.
The category string consists of character strings. A character string does not
contain white spaces. We work with abstract syntax and therefore do not have
to deal with white-space handling problems like the one described in [31]. The
category parameter-type consists of the possible formal parameter types, i.e.,
programming language types plus page types. The category supported-type
contains each type for which a direct manipulation input capability exists.
The respective Core NSP types are specified in Sect. 15.3.3.

string ::= s ∈ String
id ::= l ∈ Label

parameter-type ::= t ∈ T ∪ P

supported-type ::= t ∈ Bsupported

Parameterized server pages are based on a dynamic markup language,
which combines static client page description parts with active code parts. The
static parts encompass lists, tables, server-side calls, and forms with direct
input capabilities, namely check boxes, select lists, and hidden parameters,
together with the object element for record construction.



15.3 Formal Definition of the NSP Type System 301

Core NSP comprises list and table structures for document layout. All
the XML elements of the dynamic markup language are direct subcategories
of the category dynamic, which means that the grammar does not constrain
arbitrary nesting of these elements. Instead of that the manner of use of a
document fragment is maintained by the type system. We delve further on
this in Sect. 15.3.2.

The rest of the static language parts address server-side page calls, client-
side page calls, and user interaction. A call may contain actual parameters
only. The call element may contain no element, too. As a matter of taste the
special character εact for empty contents is used in the Core NSP grammar
to avoid redundant production and typing rules for the call element.

Core NSP comprises expression tags for direct writing to the output and
code tags in order to express the integration of active code parts with layout.
The possibility to integrate layout code into active parts is needed. It is given
by reversing the code tags. In this way all Core NSP programs can be easily
related to a convenient concrete syntax.

Core NSP is not a working programming language. It possesses only a set
of very interesting features to model all the complexity of NSP technologies.
Built-in operations, i.e., a sufficiently powerful expression language, must be
added. But this would just result in a more complex type system without
providing more insight into static NSP semantics. Instead Core NSP aims to
specify the typed interplay of server pages, the interplay of static and active
server page parts, and the non-trivial interplay of the several complex types,
i.e., user-defined types and arrays, which arise during dynamically generating
user interface descriptions.

The imperative sublanguage of Core NSP comprises statements, command
sequences, an if–then–else construct, and a while loop. The only statement is
assignment. Expressions are just variable values or deconstructions of complex
variable values, i.e., arrays or user-defined typed objects.

dynamic ::= dynamic dynamic
| ε | string
| ul | li
| table | tr | td
| call
| form | object | hidden | submit
| input | checkbox
| select | option
| expression
| code



302 15 Semantics of Web Signatures

ul ::= <ul> dynamic </ul>
li ::= <li> dynamic </li>

table ::= <table> dynamic </table>
tr ::= <tr> dynamic </tr>
td ::= <td> dynamic </td>

call ::= <call callee=‘‘id"> actualparams </call>
actualparams ::= εact | actualparam actualparams
actualparam ::= <actualparam param=‘‘id"> expr </actualparam>

form ::= <form callee=‘‘id"> dynamic </form>
object ::= <object param=‘‘id"> dynamic </object>
hidden ::= <hidden param=‘‘id"> expr </hidden>
submit ::= <submit/>
input ::= <input type=‘‘supported-type" param=‘‘id"/>

checkbox ::= <checkbox param=‘‘id"/>
select ::= <select param=‘‘id"> dynamic </select>
option ::= <option>

<value> expr </value>
<label> expr </label>

</option>

expression ::= <expression> expr </expression>
code ::= <code> com </code>
com ::= </code> dynamic <code>

com ::= stat
| com ; com
| if expr then com else com
| while expr do com

stat ::= id := expr
expr ::= id | expr.id | expr[expr]

15.3.2 Core NSP Type System Strength

The grammar given in Sect. 15.3.1 does not prevent arbitrary nestings of
the several Core NSP dynamic tag elements. Instead necessary constraints on
nesting are guaranteed by the type system. Therefore the type of a server page
fragment comprises information about the manner of use of itself as part of
an encompassing document.

As a result some context-free properties are dealt with in static semantics.
There are pragmatic reasons for this. Consider an obvious example first. In
HTML forms must not contain other forms. Furthermore some elements like
the ones for input capabilities may only occur inside a form. If one wants
to take such constraints into account in a context-free grammar, one must



15.3 Formal Definition of the NSP Type System 303

create a non-terminal for document fragments inside forms and duplicate and
appropriately modify all the relevant production rules found so far. If there
exist several such constraints the resulting grammar would quickly become
unmaintainable. For that reason the Standard Generalized Markup Language
supports the notions of exclusion and inclusion exception. The declaration of
the HTML form element in the HTML 2.0 SGML DTD [63] is the following:

<!ELEMENT FORM - - %body.content -(FORM) +(INPUT|SELECT|TEXTAREA)>

The expression -(FORM) uses exclusion exception notation and the expres-
sion +(INPUT|SELECT|TEXTAREA) uses inclusion exception notation exactly
for establishing the constraints mentioned. Indeed the SGML exception nota-
tion does not add to the expressive power of SGML [319], because an SGML
expression that includes exceptions can be translated into an extended con-
text free grammar [184]. An extended context-free grammar is a context-free
grammar with production rules that may have regular expressions as right
hand sides. The transformation algorithm given in [184] produces 22|N| non-
terminals in the worst case. This shows: if one does not have the exception
notation at hand then one needs another way to manage complexity. The
Core NSP way is to integrate necessary information into types; the resulting
mechanism formalizes the way the Amsterdam SGML parser [313] handles
exceptions. The Amsterdam SGML parser deals with exceptions by keeping
track of excluded elements in a stack.

Furthermore, in NSP the syntax of the static parts is orthogonal to the
syntax of the active parts, nevertheless both syntactic structures must regard
each other. For example, HTML or XHTML lists must not contain elements
other than list items. The corresponding SGML DTD [163] and XHTML
DTD [305] specifications are

<!ELEMENT (OL|UL) - - (LI)+> resp. <!ELEMENT ul (li)+>

In Core NSP the document fragment in Listing 15.7 is considered correct.

Listing 15.7 Core NSP: combining static and dynamic document parts

01 <ul>

02 <code> x:=3; </code>

03 <li>First list item</li>

04 <code>

05 if condition then </code>

07 <li>Second list item</li> <code>

08 else </code>

09 <li>Second list item</li> <code>

11 </code>

12 </ul>



304 15 Semantics of Web Signatures

Line 2 must be ignored with respect to the correct list structure. Further-
more it must be recognized that the code in lines 4 to 11 correctly provides a
list item. Again excluding the wrong documents by abstract syntax amounts
to duplicating production rules for the static parts that may be contained in
dynamic parts.

A Core NSP type checker has to verify uniquely the naming of server pages
in a complete system, which is a context-dependent property. It has to check
whether include pages provide correct elements. The way Core NSP treats
dynamic fragment types fits seamlessly to these tasks.

15.3.3 Core NSP Types

We now simultaneously introduce the types of Core NSP and the subtype
relation between types.

• Core NSP types. There are types for modeling programming language
types, and special types for server pages and server page fragments in
order to formalize the NSP coding guidelines. The Core NSP types are
given by a family of recursively defined type sets. Every type represents
an infinite labeled regular tree.

• Core NSP subtyping. The subtype relation formalizes the relationship of
actual client page parameters and formal server page parameters by strictly
applying the Barbara Liskov principle. A type A is a subtype of another
type B if every actual parameter of type A may be used in server page
contexts requiring elements of type B. The subtype relation is defined as
the greatest fix point of a generating function. The generating function is
presented by a set of convenient judgment rules for deriving judgments of
the form � S < T .

Note that the original Liskov substitution principle [197] is the following:
if for each object o1 of type S there is an object o2 of type T such that for all
programs P defined in terms of T , the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T .

Notational Issues

First we summarize some notation that is used in the sequel. A part of the
notation stems from the Z mathematical toolkit notation [283, 320, 147]. The
notational elements needed and their meaning are given by the following table:



15.3 Formal Definition of the NSP Type System 305

� Domain restriction (Z notation). A tuple (x, y) is a member of
S �R if and only if (x, y) is member of R and x is member of
S.

−� Domain anti-restriction (Z notation). A tuple (x, y) is a mem-
ber of S �R if and only if (x, y) is member of R and x is not
member of S.

(dom R) Domain of a relation or function (Z notation).

||−→ Finite partial function.

t ↓ Defined (relations). R(x, y) ↓ is true iff (x, y) ∈ R.
d ↓ Defined (functions). F (x) ↓ is true iff x ∈ (dom F ).
t ↑ Undefined (relations). R(x, y) ↑ is true iff (x, y) /∈ R.
d ↑ Undefined (functions). F (x) ↑ is true iff x /∈ (dom F ).

Programming Language Types

In order to model the complexity of current high-level programming lan-
guage type systems, the Core NSP types comprise basic types Bprimitive and
Bsupported, array types A, record types R, and recursive types Y. Bprimitive

models types for which no null object is provided automatically on submit.
Bsupported models types for which a direct manipulation input capability ex-
ists. Note that Bprimitive and Bsupported overlap because of the int type. The
set of all basic types B consists of the union of Bprimitive and Bsupported.
Record types and recursive types play the role of user-defined form message
types. The recursive types allow for modeling cyclic user-defined data types.
Core NSP works solely with structural type equivalence [40], i.e., there is no
concept of introducing named user-defined types, which would not contribute
to the understanding of NSP concepts. Enumeration types E, i.e., subtype
polymorphism in the narrow sense of [40], could be introduced in order to
specify the behavior of radio button tag structures. The types introduced so
far and the type variables V together form the set of programming language
types T.

T = B ∪ V ∪ A ∪ R ∪ Y

B = Bprimitive ∪ Bsupported

Bprimitive = {int, float, boolean}

Bsupported = {int, Integer, String}

V = {X, Y, Z, . . .}
∪ {Person, Customer, Article, . . .}



306 15 Semantics of Web Signatures

Type variables may be bound by the recursive type constructor µ. Overall
free type variables, i.e., type variables free in an entire Core NSP system
and complete Core NSP program, represent opaque object reference types.
It is a usual economy not to introduce ground types in the presence of type
variables [39]. Similarly in Core NSP example programs free term variables
are used to model basic constant data values.

For every programming language type, there is an array type. According
to subtyping rule (15.9) every type is a subtype of its immediate array type. In
commonly typed programming languages it is not possible to use a value as an
array of the value’s type. But the Core NSP subtype relation formalizes the
relationship between actual client page and formal server page parameters.
It is used in the NSP typing rules targeted to constrain data submission. A
single value may be used as an array if it is submitted to a server page.

In due course we informally distinguish between establishing subtyping
rules and preserving subtyping rules. The establishing subtyping rules intro-
duce initial NSP-specific subtypings. The preserving subtyping rules are just
the common judgments that deal with defining the effects of the various type
constructors on the subtype relation. Judgment rule (15.10) is the preserving
subtyping rule for array types.

A = { array of T | T ∈ T \ A}

� T < array of T
(15.9)

� S < T

� array of S < array of T
(15.10)

A record is a finite collection of uniquely labeled data items, its fields. A record
type is a finite collection of uniquely labeled types. In [250] record types are
deliberately introduced as purely syntactical and therefore ordered entities.
Then permutation rules are introduced that allow record types to be equal
except for their ordering. In other texts, such as [2] or [268], record types
are considered unordered from the beginning. We take the latter approach:
a record type is a partial function from a finite set of labels to the set of
programming language types. Rule (15.12) is just the necessary preserving
subtyping rule for records.

R = Label ||−→ T

Tj /∈ Bprimitive j ∈ 1 . . . n

� {li �→ Ti}i∈1...j−1,j+1...n < {li �→ Ti}i∈1...n
(15.11)



15.3 Formal Definition of the NSP Type System 307

� S1 < T1 . . . � Sn < Tn

� {li �→ Si}i∈1...n < {li �→ Ti}i∈1...n
(15.12)

The establishing subtyping rule (15.11) states that a shorter record type is
a subtype of a longer record type, provided the types are equal with respect to
labeled type variables. At first sight this contradicts the well-known rules for
subtyping records [39] or objects [1]. But there is no contradiction, because
these rules describe hierarchies of feature support and we just specify another
phenomenon: rule (15.11) models an actual record parameter being automat-
ically filled with null objects for the fields of non-primitive types that are not
provided by the actual parameter, but expected by the formal parameter.

The Core NSP type system encompasses recursive types for modeling the
complexity of cyclic user-defined data types.

Y = { µ X . R | X ∈ V, R ∈ R }

� S[µX.S/X ] < T

� µX.S < T
(15.13)

� S < T [µX.T/X ]
� S < µX.T

(15.14)

Recursive types may be handled in an iso-recursive or an equi-recursive way.
The terms iso-recursive and equi-recursive stem from [69]. In an iso-recursive
type system, a recursive type is considered isomorphic to its one-step unfolding
and a family of unfold and fold operations on the term level is provided in
order to represent the type isomorphisms. A prominent example of this purely
syntactical approach is [2]. In an equi-recursive type system like the one given
in [19], two recursive types are considered equal if they have the same infinite
unfolding. We have chosen to follow the equi-recursive approach along the
lines of [123] for two reasons. First, it keeps the Core NSP language natural;
no explicit folding and unfolding are needed. More importantly, though the
theory of an equi-recursive treatment is challenging, it is well understood and
some crucial results concerning proof techniques and type checking of recursive
typing and recursive subtyping like [41, 9, 270, 177] are elaborated in an equi-
recursive setting. Actually, compared to iso-recursive typing, equi-recursive
typing is a Curry-style [19], i.e., implicit, typing discipline, and therefore its
theory is more challenging, or in more practical terms, constructing a type
checker is more challenging.

The subtype relation adequately formalizes all the advanced NSP notions
like form message types and higher-order server pages as may be checked
against the examples given in Sect. 15.2.

In the Core NSP type system types represent finite trees or possibly infinite
regular trees. A regular tree is a possibly infinite tree that has a finite set of



308 15 Semantics of Web Signatures

distinct subtrees only [66]. More precisely these type trees are unordered,
labeled, and finitely branching – note that we treat records as unordered
tuples from the outset. Type equivalence is not explicitly defined, it is given
implicitly by the subtype relation: the subtype relation is not a partial order
but a preorder and two types are equal if they are mutual subtypes. The
subtype relation is defined as the greatest fixed point of a monotone generating
function on the universe of type trees [123]. The Core NSP subtyping rules
provide an intuitive description of this generating function. The subtyping
rules for left folding (15.13) and right folding (15.14) provide the desired
recursive subtyping. Rules for reflexivity and transitivity are given by (15.15)
and (15.16).

� T < T
(15.15)

� R < S � S < T

� R < T
(15.16)

Node
element:int

List

Null

List
element:int

0..1 next

1
next(a)

(b)

Fig. 15.4. List definitions

A Digression on Core NSP Recursive Record Subtyping

Normally sum or variant types are used in order to provide some finite data to
be inhabited in recursive types. There is no sum or variant type in Core NSP.
Instead the establishing record subtyping rule (15.11) makes it possible that
finite data may be submitted to a formal parameter of recursive type. For
example, the finite data gathered in Listing 15.8 have the recursive type given
by subtype derivation (15.17).

e ≡DEF element
n ≡DEF next

� {e �→ int, n �→{e �→ int, n �→{e �→ int}}}
< {e �→ int, n �→{e �→ int, n �→{e �→ int, n �→µX.{e �→ int, n �→X}}}}
= µX.{e �→ int, n �→X}

(15.17)



15.3 Formal Definition of the NSP Type System 309

Listing 15.8 Core NSP: gathering data of recursive type

01 <object param="list">

02 <input param="element" type="int"/>

03 <object param="next">

04 <input param="element" type="int"/>

05 <object param="next">

06 <input param="next" type="int"/>

07 </object>

08 </object>

09 </object>

Interestingly the record subtyping rule (15.11) is more generally appropri-
ate for a direct formalization of cyclic data type definitions found in the usual
object-oriented languages. Consider the definition of possibly infinite lists in
the Haskell [178] code fragment (15.18). The null data constructor for the left
summand is needed in order to explicitly enable finite lists.

data List = NULL | NODE {element ::Int, next ::List} (15.18)

The direct counterpart of this data type definition in an object-oriented
language is depicted as a class diagram in Fig. 15.4(a) – the diagram is drawn
within an implementation perspective in the sense of [116, 64]. A more appro-
priate way of modeling lists in an object-oriented programming language is
given in Fig. 15.4(b). Basically the 1 multiplicity of the navigated association
in 15.4(a) is replaced by an 0..1 multiplicity in 15.4(b). It is possible to de-
fine lists this way, because in an object-oriented language every object field of
complex type that is not constructed is implicitly provided as a null object.
This mechanism is exactly the one formalized by subtyping rule (15.11). To see
this, note that the lists defined in (15.18) and 15.4(a) both have type Listexpl
given in (15.19) and 15.4(b) has type Listimpl given in (15.20) provided that
subtyping rule (15.11) is present. The variant notation in the sequel is taken
from [134].

Listexpl ≡DEF µList.[NULL : {}, NODE : {element �→int, next �→List}]
(15.19)

Listimpl ≡DEF µList.{element �→int, next �→List} (15.20)



310 15 Semantics of Web Signatures

Server Page Types

In order to formalize the NSP coding guidelines the type system of Core NSP
comprises server page types P, web signatures W, a single complete web page
type �∈C, dynamic fragment types D, layout types L, tag element types E,
form occurrence types F, and system types S.

A server page type is a functional type that has a web signature as argu-
ment type. An include server page has a dynamic document fragment type as
result type, and a web server page the unique complete web page type.

P = { w → r | w ∈ W, r ∈ C ∪ D }

W = Label ||−→ (T ∪ P)

C = {�}
A web signature is a record. This time a labeled component of a record type

is either a programming language type or a server page type; that is, the type
system supports higher-order server pages. Notably a clean separation between
the programming language types and the additional NSP-specific types is kept.
Server page types may be formal parameter types, but these formal parameters
can be used only by specific NSP tags. Server pages deliberately become no
first class citizens, because in this way the Core NSP models conservative
amalgamation of NSP concepts with a high-level programming language.

The preserving subtyping rule (15.12) for records equally applies to web
signatures. The establishing subtyping rule (15.11) must be slightly modified
resulting in rule (15.21), because formal parameters of server page type must
always be provided, too.

Subtyping rule (15.22) is standard and states that server page types are
contravariant in the argument type and covariant in the result type.

Tj /∈ Bprimitive ∪ P j ∈ 1 . . . n

� {li �→ Ti}i∈1...j−1,j+1...n < {li �→ Ti}i∈1...n
(15.21)

� w′ < w � R < R′

� w → R < w′ → R′ (15.22)

A part of a core document has a document fragment type. Such a type
consists of a layout type and a web signature. The web signature is the type
of the data, which is eventually provided by the document fragment as part
of an actual form parameter. If a web signature plays the part of a document
fragment type it is also called a form type. The layout type constrains the
usability of the document fragment as part of an encompassing document. It
consists of an element type and a form occurrence type.



15.3 Formal Definition of the NSP Type System 311

D = L × W

L = E × F

� S1 < T1 � S2 < T2

� (S1, S2) < (T1, T2)
(15.23)

Subtyping rule (15.23) is standard for products and applies both to doc-
ument fragment and layout types. An element type partly describes where a
document fragment may be used. Document fragments that are sure to pro-
duce no output have the neutral document type ◦. Examples for such neutral
document parts are hidden parameters and pure Java code. Document frag-
ments that may produce visible data like string data or controls have the out-
put type •. Document fragments that may produce list elements, table data,
table rows, or select list options have type LI, TD, TR, and OP respectively.
They may be used in contexts where the respective element is demanded. Neu-
tral code can be used everywhere. This is expressed by rule (15.24).

E = { ◦, •,TR,TD,LI,OP}

T ∈ E

� ◦ < T
(15.24)

The form occurrence type further constrains the usability of document
fragments. Fragments that must be used inside a form, because they generate
client page parts containing controls, have the inside form type ⇓. Fragments
that must be used outside a form, because they generate client page fragments
that already contain forms, have the outside form type ⇑. Fragments that may
be used inside or outside forms have the neutral form type �. Rule (15.25)
specifies that such fragments can play the role of both fragments of outside
form and fragments of inside form type.

F = { ⇓,⇑,� }

T ∈ F

� � < T
(15.25)

S = { �,
√ }

An NSP system is a collection of NSPs. NSP systems that are type correct
receive the well type �. The complete type

√
is used for complete systems. A

complete system is a well-typed system where all used server page names are
defined, i.e., are assigned to a server page of the system, and no server page
names are used as variables.



312 15 Semantics of Web Signatures

15.3.4 Type Operators

In the NSP typing rules in Sect. 15.3.6 a central type operation, termed form
type composition � in the sequel, is used that describes the composition of
form content fragments with respect to the provided actual superparameter
type. First an auxiliary operator ∗ is defined, which provides the dual effect
of the array item type extractor ⇓ in Chap. 15.1. If applied to an array the
operator leaves the type unchanged, otherwise it yields the respective array
type.

T ∗ ≡DEF

{
array of T , T /∈ A

T , else

The form type composition � is the cornerstone of the NSP type system.
Form content provides direct input capabilities, data selection capabilities,
and hidden parameters. On submit an actual superparameter is transmitted.
The type of this superparameter can be determined statically in NSP, and
is called the form type of the form content, see Sect. 15.3.3. Equally docu-
ment fragments, which dynamically may generate form content, have a form
type. Form type composition is applied to form parameter types and describes
the effect of sequencing document parts. Consequently form type composition
is used to specify typing with respect to programming language sequencing,
loops, and document composition.

w1� w2 ≡DEF

��������
�������

⊥ , �� ∃(l1 	→T1)∈w1 • ∃(l2 	→T2)∈w2 • l1 = l2 ∧ P1∈� ∧ P2∈�
⊥ , �� ∃(l1 	→T1)∈w1 • ∃(l2 	→T2)∈w2 • l1 = l2 ∧ T1� T2 undef.

(dom w2)−�w1 ∪ (dom w1)−�w2

∪ � �l 	→ (T1 � T2)∗
� |(l 	→T1)∈w1 ∧ (l 	→T2)∈w2

�
, ����

If a document fragment targets a formal parameter of a certain type and
another document fragment does not target this formal parameter, then and
only then does the document resulting from sequencing the document parts
target the given formal parameter with unchanged type. That is, with respect
to non-overlapping parts of form types, form type composition is just union.
With antidomain restriction notation, see page 304, this is specified succinctly
in line 3 of the � operator definition.

Two document fragments that target the same formal parameters may
be sequenced if the targeted formal parameter types are compatible for each
formal parameter. NSP types are compatible if they have a supertype in com-
mon. The NSP subtype relation formalizes when an actual parameter may
be submitted to a dialogue method: if its type is a subtype of the targeted
formal parameter. So if two documents have targeted parameters with com-
patible types in common only, the joined document may target every dialogue
method that fulfills the following: formal parameters that are targeted by



15.3 Formal Definition of the NSP Type System 313

both document parts have an array type, because of sequencing a single data
transmission cannot be ensured in either case. The array items’ type must be
a common supertype of the targeting actual parameters. This is formalized
in line 4 of the � operator definition: for every shared formal parameter a
formal array parameter of the least common supertype belongs to the result
form type. The least common supertype of two types is given as the least
upper bound of the two types, which is unique except for the equality induced
by recursive subtyping itself. Consider the following example application of
the � operator:

{l �→ int, n �→ {o �→ int, p �→ String}} (T1)
� {m �→ int, n �→ {o �→ int, q �→ String}} (T2)

=

{ l �→ int,
m �→ int,
n �→ array of{o �→ int, p �→ String, q �→ String}

}
(T3)

In the example two form fragments are concatenated, the first one having
type T1, the second one having type T2. The compound form content will
provide int values for the formal parameters l and m. It will provide two
actual parameters for the formal parameter n. The record stemming from
the first form fragment can be automatically filled with a null object for a
formal q parameter of type String, because String is a non-primitive type.
Analogously, the record stemming from the second form fragment can be
automatically filled with a null object for a formal p parameter. The compound
form document therefore can target a dialogue method with web signature T3.

The error cases in the � operator definition are equally important. The �
operator is a partial function. If two document fragments target the same for-
mal parameter with non-compatible types, they simply cannot be sequenced.
The � operator is undefined for the respective form types. More interestingly,
two document fragments that should be composed must not target a formal
server page parameter. This would result in an actual server page parameter
array which would contradict the overall principle of conservative language
amalgamation introduced in Chap. 11. If desired, page array types must be
introduced by tag support.

Form type composition can be characterized algebraically. The web signa-
tures form a monoid ( W , � , ∅ ) with the � operator as monoid operation
and the empty web signature as neutral element. The operation (λv.v � w)w

is idempotent for every arbitrary fixed web signature w, which explains why
the typing rule (15.37) for loop-structures is adequate.

15.3.5 Environments and Judgments

In the NSP type system two environments are used. The first environment Γ is
the usual type environment. The second environment ∆ is used for binding



314 15 Semantics of Web Signatures

names to server pages, i.e., as a definition environment. It follows from their
declaration that environments are web signatures. All definitions coined for
web signatures immediately apply to the environments. This is exploited for
example in the system parts typing rule (15.59).

Γ : Label ||−→ (T ∪ P) = W

∆ : Label ||−→ P ⊂ W

The Core NSP identifiers are used for basic programming language expres-
sions, namely variables and constants, and for page identifiers, namely formal
page parameters and server pages names belonging to the complete system. In
some contexts, e.g., in hidden parameters or in select menu option values, both
page identifiers and arbitrary programming language expressions are allowed.
Therefore initially page identifiers are treated syntactically as programming
language expressions. However, a clear cut between page identifiers and the
programming language is maintained, because the modeling of conservative
amalgamation is an objective. The cut is provided by the premises of typing
rules concerning such elements where only a certain kind of entity is allowed,
e.g., in the statement typing rule (15.29) page identifiers are prevented from
becoming program parts.

The Core NSP type system relies on several typing judgments:

Γ � e : T ∪ P e ∈ expr
Γ � n : D n ∈ com ∪ dynamic
Γ � c : P c ∈ websig-core
Γ � a : W a ∈ actualparams
Γ, ∆ � s : S s ∈ system

Eventually the judgment that a system has complete type is targeted. In
order to achieve this, different kinds of types must be derived for entities of
different syntactic categories. Expressions have programming language types
or page types consequently along the lines just discussed. Both programming
language code and user interface descriptions have document fragment types,
because they can be interlaced arbitrarily and therefore belong conceptually
to the same kind of document. Parameterized core documents have page types.
The actual parameters of a call element together provide an actual superpa-
rameter, the type of which is a web signature and is termed a call type. All
the kinds of judgments so far work with respect to a given type environment.
If documents are considered as parts of a system they must mutually respect
defined server page names. Therefore subsystem judgments have to be given
additionally with respect to the definition environment.

15.3.6 Typing Rules

The notion of Core NSP type correctness is specified as an algorithmic type
system. In the presence of subtyping there are two alternatives for specifying



15.3 Formal Definition of the NSP Type System 315

type correctness with a type system. The first one is by means of a declarative
type system. In such a type system a subsumption rule is present. Whenever
necessary it can be derived that an entity always has each of its supertypes.
Instead, in an algorithmic type system reasoning about an entity’s super-
types happens in a controlled way by fulfilling typing rule premises. Both
approaches have their advantages and drawbacks. The declarative approach
usually leads to more succinct typing rules. However, reasoning about type
system properties may become complicated in the declarative approach – cut
elimination techniques may have to be employed. In the algorithmic approach
the single typing rules may quickly become complex; however, an algorithmic
type system is easier to handle in proofs.

For Core NSP an algorithmic type system is the correct choice. Extra
premises are needed in some of the typing rules, e.g., in the typing rule for
form submission. In some rules slightly more complex type patterns have to
be used in the premises, e.g., in the typing rules concerning layout structur-
ing document elements. However, in the Core NSP type system this extra
complexity fosters understandability.

The typing rules are presented by starting from basic building blocks and
moving to more complex building blocks. The typing rule (15.26) allows for
extraction of an identifier typing assumption from the typing environment.
Rules (15.27) and (15.28) give the types of selected record fields and indexed
array elements respectively.

(v �→ T ) ∈ Γ

Γ � v : T
(15.26)

Γ � e : {li �→ Ti}i∈1...n j ∈ 1 . . . n

Γ � e.lj : Tj
(15.27)

Γ � e : array of T Γ � i : int
Γ � e[i] : T

(15.28)

Typing rule (15.29) introduces programming language statements, namely as-
signments. Only programming language variables and expression may be used,
i.e., expressions must not contain page identifiers. The resulting statement will
not produce any output. It is possible to write an assignment inside forms and
outside forms. If it is used inside a form it will not contribute to the submitted
superparameter. Therefore a statement has a document fragment type which
is composed of the neutral document type, the neutral form type, and the
empty web signature. The empty string, which is explicitly allowed as content
in NSP, obtains the same type by rule (15.30).

Γ � x : T Γ � e : T T ∈ T

Γ � x := e : ((◦,�), ∅) (15.29)



316 15 Semantics of Web Signatures

Γ � ε : ((◦,�), ∅) (15.30)

Actually in Core NSP the programming language and user interface descrip-
tion language are interlaced tightly by the abstract syntax. The code tags are
just a means to relate the syntax to common concrete server pages syntax.
The code tags are used to switch explicitly between programming language
and user interface description and back. For the latter the tags may be read in
reverse order. However, this switching does not affect the document fragment
type and therefore the rules (15.31) and (15.32) do not, too.

Γ � c : D

Γ � < code > c < /code > : D
(15.31)

Γ � d : D

Γ � < /code > d < code > : D
(15.32)

Equally basic as rule (15.29), rule (15.33) introduces character strings as well-
typed user interface descriptions. A string’s type consists of the output type,
the neutral form type, and the empty web signature. Another way to produce
output is by means of expression elements, which support all basic types and
get by rule (15.34) the same type as character strings.

d ∈ string
Γ � d : ((•,�), ∅) (15.33)

Γ � e : T T ∈ B

Γ � < expression > e < /expression > : ((•,�), ∅) (15.34)

Composing user descriptions parts and sequencing programming language
parts must follow essentially the same typing rule. In both rule (15.35) and
rule (15.36) premises ensure that the document fragment types of both docu-
ment parts are compatible. If the parts have a common layout supertype, they
may be used together in server pages contexts of that type. If in addition to
that the composition of the parts’ form types is defined, the composition be-
comes the resulting form type. Form composition was explained in Sect. 15.3.4.

d1, d2 ∈ dynamic
Γ � d1 : (L1, w1) Γ � d2 : (L2, w2) L1 � L2 ↓ w1�w2 ↓

Γ � d1 d2 : (L1 � L2, w1 � w2)
(15.35)



15.3 Formal Definition of the NSP Type System 317

Γ � c1 : (L1, w1) Γ � c2 : (L2, w2) L1� L2 ↓ w1� w2 ↓
Γ � c1; c2 : (L1� L2, w1� w2)

(15.36)

The loop is a means of dynamically sequencing. From the type system’s point
of view it suffices to regard it as a sequence of twice the loop body as ex-
pressed by typing rule (15.37). For an if–then–else structure the types of both
branches must be compatible in order to yield a well-typed structure. Either
one or the other branch is executed, so the least upper bound of the layout
types and least upper bound of the form types establish the adequate new
document fragment type.

Γ � e : boolean Γ � c : (L, w)
Γ � while e do c : (L, w � w)

(15.37)

Γ � e : boolean Γ � c1 : D1 Γ � c2 : D2 D1� D2 ↓
Γ � if e then c1 else c2 : D1� D2

(15.38)

Next the typing rules for controls are considered. The submit button is a vis-
ible control and must not occur outside a form; in Core NSP it is an empty
element. It obtains the output type, the inside form type, and the empty web
signature as document fragment type. Similarly an input control obtains the
output type and the inside form type. But an input control introduces a form
type. The type of the input control is syntactically fixed to be a widget sup-
ported type. The param attribute of the control is mapped to the control’s
type. This pair becomes the form type in the control’s document fragment
type. Check boxes are similar. In Core NSP check boxes are only used to
gather Boolean data. Hidden parameters are not visible. The value of the hid-
den parameter may be a programming language expression of arbitrary type
or an identifier of page type.

Γ � < submit/ > : ((•,⇓), ∅) (15.39)

T ∈ Bsupported

Γ � < input type = “T ” param = “l”/ > : ((•,⇓), {(l �→ T )}) (15.40)

Γ � < checkbox param = “l”/ > : ((•,⇓), {(l �→ boolean)}) (15.41)

Γ � e : T

Γ � < hidden param = “l” > e < /hidden > : ((◦,⇓), {(l �→ T )}) (15.42)

The select element may only contain code that generates option elements.



318 15 Semantics of Web Signatures

Therefore an option element obtains the option type OP by rule (15.44) and
the select element typing rule (15.43) requires this option type from its con-
tent. An option element does not have its own param element. The interesting
type information concerning the option value is wrapped as an array type that
is assigned to an arbitrary label. The type information is used by rule (15.43)
to construct the correct form type. In this way no new kind of judgment has
to be introduced for select menu options.

Γ � d :
(
(OP,�), {(l �→ array of T )})

Γ �
< select param = “l” >

d
< /select > : ((•,⇓), {(l �→ array of T )})

(15.43)

Γ � v : T Γ � e : int l ∈ Label

Γ �
< option >

< value > v < /value >
< label > e < /label >

< /option > : ((OP,�), {(l �→ array of T )})

(15.44)

The object element is a record construction facility. The enclosed document
fragment’s layout type lasts after application of typing rule (15.45). The frag-
ment’s form type is assigned to the object element’s param attribute. In this
way the superparameter provided by the enclosed document becomes a named
object attribute.

Γ � d : (L, w)
Γ � < object param = “l” > d < /object > : (L, {(l �→ w)}) (15.45)

The form typing rule (15.46) requires that a form may target only a server
page that yields a complete web page if it is called. Furthermore the form
type of the form content must be a subtype of the targeted web signature,
because the Core NSP subtype relation specifies when a form parameter may
be submitted to a dialogue method of given signature. Furthermore the form
contents must be allowed to occur inside a form. Then the rule (15.46) specifies
that the form is a visible element that must not be contained inside another
form.

Γ � l : w → � Γ � d : ((e,⇓), v) � v < w

Γ � < form callee = “l” > d < /form > : ((e,⇑), ∅) (15.46)

Now the layout structuring elements, i.e., lists and tables, are investigated.
The corresponding typing rules (15.47) to (15.51) do not affect the form types
and form occurrence types of contained elements. Only document parts that
have no specific layout type, i.e., are either neutral or merely visible, are al-
lowed to become list items by rule (15.47). Only documents with list layout



15.3 Formal Definition of the NSP Type System 319

type may become part of a list. A well-typed list is a visible element. The
rules (15.49) to (15.51) work analogously for tables.

Γ � d : ((• ∨ ◦, F ), w)
< li > d < /li > : ((LI, F ), w)

(15.47)

Γ � d : ((LI ∨ ◦, F ), w)
< ul > d < /ul > : ((•, F ), w)

(15.48)

Γ � d : ((• ∨ ◦, F ), w)
< td > d < /td > : ((TD, F ), w)

(15.49)

Γ � d : ((TD ∨ ◦, F ), w)
< tr > d < /tr > : ((TR, F ), w)

(15.50)

Γ � d : ((TR ∨ ◦, F ), w)
< table > d < /table > : ((•, F ), w)

(15.51)

As the last core document element the server-side call is treated. A call ele-
ment may only contain actual parameter elements. This is ensured syntacti-
cally. The special character εact acts as an empty parameter list if necessary.
It has the empty web signature as call type. Typing rule (15.54) makes it
possible for several actual parameter elements to uniquely provide the param-
eters for a server-side call. Rule (15.52) specifies that a server call can target
an include server page only. The call element inherits the targeted include
server page’s document fragment type, because this page will replace the call
element if it is called.

Γ � l : w→D Γ � as : v � v < w

Γ � < call callee = “l” > as < /call > : D
(15.52)

Γ � εact : ∅ (15.53)

Γ � as : w Γ � e : T l /∈ (dom w)

Γ �
< actualparam param = “l” >

e
< /actualparam > as : w ∪ {(l �→ T )}

(15.54)

With the typing rules (15.55) and (15.58) the arbitrary document frag-
ment may become an include server page, with the document fragment’s type
becoming the server page’s result type. A document fragment may become



320 15 Semantics of Web Signatures

a complete web page by typing rules (15.56) and (15.58) if it has no spe-
cific layout type, i.e., is neutral or merely visible, and furthermore is not in-
tended to be used inside forms. The resulting server page obtains the complete
type as result type. Both include server page cores and web server page cores
start with no formal parameters initially. With rule (15.57) parameters can
be added to server page cores. The rule’s premises ensure that a new formal
parameter must have another name than all the other parameters and that
the formal parameter is used in the core document type correctly. A binding of
a type to a new formal parameter’s name is erased from the type environment.

Γ � d : D d ∈ dynamic
Γ � < include > d < /include > : ∅ → D

(15.55)

Γ � d : ((• ∨ ◦,� ∨ ⇑), ∅) t ∈ strings d ∈ dynamic

Γ �
< html >

< head >< title > t < /head >< /title >
< body > d < /body >

< /html > : ∅ → �

(15.56)

Γ � l : T Γ � c : w → D l /∈ (dom w)

Γ\(l �→ T ) � < param name = “l” type = “T ”/ >
c : (w ∪ {(l �→ T )}) → D

(15.57)

Γ � l : P Γ � c : P c ∈ websig-core
Γ\(l �→ P ), {(l �→ P )} � < nsp name = “l” > c < /nsp > : �

(15.58)

A server page core can become a well-typed server page by rule (15.58).
The new server page name and the type bound to it are taken from the
type environment and become the definition environment. An NSP system
is a collection of NSPs. A single well-typed server page is already a system.
Rule (15.59) specifies system compatibility. Rule (15.60) specifies system com-
pleteness. Two systems are compatible if they have no overlapping server page
definitions. Furthermore the server pages that are defined in one system and
used in the other must be able to process the data they receive from the other
system, therefore the types of the server pages defined in the one system must
be subtypes of the ones bound to their names in the other system’s type
environment.

s1, s2 ∈ system (dom ∆1) ∩ (dom ∆2) = ∅
((dom Γ2)� ∆1) < ((dom ∆1)� Γ2)
((dom Γ1)� ∆2) < ((dom ∆2)� Γ1)

Γ1, ∆1 � s1 : � Γ2, ∆2 � s2 : �
((dom ∆2)−�Γ1) ∪ ((dom ∆1)−�Γ2), ∆1 ∪ ∆2 � s1 s2 : �

(15.59)



15.3 Formal Definition of the NSP Type System 321

Γ ∈ R

(dom ∆) ∩ bound(s) = ∅
Γ, ∆ � s : �
Γ, ∆ � s :

√ (15.60)

Typing rule (15.60) specifies when a well-typed system is complete. First,
all of the used server pages must be defined; that is, the type environment is
a pure record type. Secondly, server page definitions may not occur as bound
variables somewhere in the system.

Theorem 15.1. Core NSP type checking is decidable.

Proof. Core NSP is explicitly typed. The Core NSP type system is algorith-
mic. Recursive subtyping is decidable. The least upper bound can be consid-
ered as a union operation during type checking – as a result a form content is
considered to have a finite collection of types, which are each checked against
a targeted server page if rule (15.46) is applied. �



Part IV

Conclusion



16

A Comparison of Modeling Methods

This chapter discusses representative system modeling approaches and tech-
niques. Some of the methods discussed have gained widespread attention in
the past, others represent recent efforts in the areas indicated. The aim of
the chapter is to comprehend the opinions stated in this book. Alternative
articulations of the new standpoints are provided by comparing them with
the standpoints of other approaches.

Information systems hold data, and provide functionality to the user.
Therefore we first discuss user interface modeling and data modeling in their
own right. A review of model-oriented specification languages is provided. We
proceed with the two major comprehensive approaches, structured analysis
and object-oriented analysis. Finally the current discussion on model-driven
architecture is taken into account.

16.1 User Interface Modeling

The form-based interface is the poor cousin of HCI of the human–computer in-
teraction (HCI) community. This did not reduce the practical importance and
ubiquity of this kind of interface. The HCI community has naturally believed
that over time the crude looking form-based interfaces will be replaced by
advanced GUI-based interfaces. However, it seems by now that many new in-
terface metaphors have not been able to provide real added value to the cases
where form-based interfaces are used. The typical usage of a textual input
field, e.g., the collection of a new username, apparently cannot be improved
in most cases. Hence the form-based interface seems destined to remain with
us in the future.

User interface modeling has become a recognized area of research with the
advent of GUIs. A major milestone in the research on user interface modeling
is the Seeheim model [249, 131], which defines a reference architecture for user
interface management systems (UIMS), see Fig. 16.1. This reference model has
served as the starting point for intense research that is still underway [281].



326 16 A Comparison of Modeling Methods

Presentation Dialogue Control
Application

Interface
Model

Fig. 16.1. The Seeheim model of user interfaces

State diagrams have been used for a long time in user interface specifi-
cation [246], partly with the objective of user interface generation [281]. The
elaborate approaches [309, 310, 173] target user interface specification only at
a fine-grained level, in our terminology concerning page interaction. Another
early approach [146] targeted the modeling of push-based, form-based systems
like the already discussed single-user desktop databases.

DENIM and SILK [191, 229] are informal interactive tools that support the
early stages of user interface design. They enable the execution of electronic
sketches of user interface prototypes. PICTIVE [223, 224, 225] (Plastic In-
terface for Collaborative Technology Initiatives through Video Exploration)
is a design method for the participatory creation of software interfaces for
interactive systems.

The form-oriented user interface model applies the concept of black-box
abstraction to direct manipulation interfaces. The pages presented to the user
are edited by partially using direct manipulation. One can roughly say that
input of primitive data is keyboard oriented, while manipulating opaque refer-
ences is mouse-based. Moreover navigation is rather mouse based, but in any
case there are certainly many exceptions to these trends. The form-oriented
viewpoint abstracts from the details of page change. We want to call this the
transparency of input devices; the usage of these input devices is considered
to be intuitive, and therefore the particular technologies can be seen as being
invisible. The user has the impression of entering the input directly.

16.2 Web Site Modeling

16.2.1 Hypertext Modeling

The conceptual modeling of hypertext is a separate domain, which has been
intensively studied since the beginning of interest in hypertext [232]. A ref-
erence model for hypertext based on formal specification with Z is [136]. A
complete methodology for hypermedia design called RMM is presented in
[172]. The aim to reduce the necessary navigation primitives is addressed in
WebML [45], which we discuss in the next section. The conceptual model-
ing of navigation was also addressed in the ViewNet approach [325]. These
named approaches are modeling content in logical collections of information



16.2 Web Site Modeling 327

elements. As such these approaches are related to modeling of information
architectures [262] as represented by content management systems. In the
early contribution of Zhaneg and Pong [324] statecharts are employed to give
semantics to frame-based, scrolling-based hypertexts. The approach HMBS
(Hypermedia Based on Statecharts) discusses patterns for modeling advanced
concepts such as hierarchical views, access control, versioning and navigational
contexts [240].

All the named hypertext modeling approaches do not use bipartite transi-
tion descriptions. The system response in these approaches is unconditional.
These approaches therefore also have no direct connection to constraint writ-
ing.

16.2.2 Modeling Web Sites

WebML [45] is a visual language for the conceptual modeling of complex web
sites, in which all concepts are defined visually as well as in XML. WebML
offers icons for page elements for composing web sites, e.g., catalogue pages
and single item views. The model of the web sites involves a number of orthog-
onal divisions, called structural model, composition model, navigation model,
presentation model, and personalization model. The structural model is in
principle a semantic data model described in XML. The composition model
is a description of page content based on the data model. The navigation
model describes hyperlinks between the pages, with a distinction between so-
called contextual links, which are induced by the structure of the data model,
and non-contextual links, which are freely defined. The WebML approach can
therefore be seen as an advanced and customizable successor of model-driven
interface generators [281]: the basic idea of such systems is to generate all
contextual links from the model. Advanced systems like WebML offer on the
other hand the possibility to choose between the contextual links as well as
to use freely definable links. Links in WebML are directed edges, which lead
typically from pages to pages and therefore form a non-bipartite navigation
model. WebML also offers a mechanism for accessing so-called generic exter-
nal operations by model elements called operation units [46]. Operation units
have conditional output similar to server actions in form-oriented analysis,
but perform asynchronous computations. They are activated by a designated
link and can afterwards perform operations of arbitrary length. They can then
leave content in other WebML-modeled units.

A solution for managing web applications that addresses both semantic
and managerial issues is [118].



328 16 A Comparison of Modeling Methods

16.3 Data Modeling

16.3.1 Properties of Relational Modeling Languages

As we have said, many data modeling languages like ER diagrams, UML, etc.,
as well as our DAL, have important commonalities, and the central common-
ality is that they have so-called relational semantics. The key element of these
relational semantics is the way the connections between different data types
are established. In fact one can say that even UML, which is usually conceived
as a primarily object-oriented language, not least because of the way it is pre-
sented by its creators, is in contrast rather a primarily relational language,
with object-oriented extensions. In fact a closer investigation shows that the
object-oriented and the relational features are rather loosely connected.

The characterizing concept of relational semantics is the way in which
collections associated with a single object are modeled. The best way to il-
lustrate the key difference between relational semantics and third generation
languages, i.e., C, Java, but also Algol etc., is by looking at an example that
represents the general concepts. A paradigmatic example is a purchase order
with a list of posts. If you model an order in a third generation language, you
typically have a record data type representing the header of the order, e.g.,
containing the customer ID, the date of the order, etc. Furthermore the order
record contains a field that is a collection of order lines, which is typically a
polymorphic collection type from a library, or the inbuilt array type of the
language. Hence the order header refers to the order lines. On the other hand,
in the relational paradigm that you find in relational databases as well as
in typical constraint languages for class diagrams, the order lines contain a
reference to the order header, but not vice versa, i.e., the order header does
not contain a reference to the order lines. If you want to obtain the list of
order lines of the order, you make a request to the system with the following
meaning: “show me all order lines which refer to this header.” In this way the
complete order is obtained by a query executed afresh each time it is used,
but in the conventional sense the order is not stored as a composite data
object. The clue to relational databases is that behind the scenes, the data
record types you define are embedded in an automated indexing framework
which is totally transparent to the user, but which enables the database soft-
ware to offer a powerful query language, which can answer the above request
efficiently [272].

Generally speaking, in third generation languages used for describing effi-
cient data structures and algorithms, a collection is modeled explicitly in the
state as a linked data structure, i.e., a linked list containing references to all
members. In a relational model each member of the collection holds a refer-
ence to an object representing the collection, the so-called foreign key. The
collection associated with the object is created only on demand as the result
of an operation, namely a query, which searches for all objects of a given type,
which have the right reference.



16.4 Model-Oriented Specification Languages 329

16.3.2 Domain Models

Based on the discussion of real-world modeling in Sect. 9.4, this section re-
considers the notion of domain model. A domain model is a library of data
models, which are to be used in a business domain. The domain model deals
with models that are needed for the exchange between organizations or per-
sons or models that an organization may use internally, since it is impossible
to define a strict border.

Note that from our viewpoint this is the whole definition of ontologies.
Specifically, we again do not suggest that an ontology describes objects in the
real world. In our view, the clearest conception of domain-specific enterprise
systems is simply that their model contains the ontology as a submodel. This
is a precise point about ontologies. The assumption that the ontology models
objects in the real world may be a nice intuition, but it is a matter of taste
and not precise.

Ontologies are the basic intuition between semantic data modeling tech-
niques, which are declared as being real-world modeling. However, the real-
world modeling conception once more turns out to contain an explanation
that is arguably more confusing than clarifying. There is a possible elabora-
tion of the real-world modeling concept, which talks of types in the world.
This approach depicts a relation between the structure of the data model and
the structure of the world, not between the state of the data model and the
actual state of the world. However, the error here is arguably the indicative in
the statement that the data model depicts facts in the real world. An accept-
able version would be an affirmative one: we want to create the data model
so that it represents our view of the real world.

The use of a domain model in different systems creates interoperability.
There is no restriction on the types of constraints that may be used in a
domain model. Due to the integration of functionality in the data model, the
domain model may therefore contain business rules. A model of an enterprise
system typically contains parts besides the domain model.

Domain model entity types are abstract entity types. Consider the date
type as an example. A date can be read in different formats. All attributes ex-
pressing the respective formats are connected with the date object. They are
furthermore connected by constraints, which state the mutual format conver-
sion. Domain models typically will be used only in parts. Consider an address
record as an example. A system may want to use a part of the address record.
One of the practical problems here is related to the question of multiplicities.
The domain model should contain one address entity type, which offers an
extensive list of attributes about the user.

16.4 Model-Oriented Specification Languages

Formal system specification languages can be divided into algebraic specifi-
cation languages and model-oriented specification languages [148]. Algebraic



330 16 A Comparison of Modeling Methods

approaches [326, 126] are completely axiom-based: axioms are the sole means
to specify abstract data types. Model-oriented approaches are rather two-
staged. First the state of an abstract state machine, the model, is explicitly
specified by means of type constructors, then operations are specified with
respect to the model. In order to explain this difference, a typical example is
often used: the stack. In a model-oriented specification language [171, 25] the
stack can be modeled simply by a sequence of items, while with an algebraic
specification language, the stack specification looks like the following:

pop(push(s,i))=s

In the following section we use the well-known specification language
Z [283] as an example for the model-oriented approach. Reports on the usage
of the specification language Z for the refactoring of the IBM CICS Applica-
tion Programming Interface are provided by [60, 145].

16.4.1 The Z Specification Language

The aim of Z is perhaps best pointed out in the phrase specification using
mathematics [147]. In Z systems are specified as functions. For stateful systems
Z uses an automaton model for the specification of system states. The model,
called the state machine model in [320], describes the system as an automaton
with a state from a potentially infinite state space and a state transition
function. The system description therefore consists of a specification of the
space of possible states and the operations on the state. Z allows specification
of update operations that lead to state changes, ∆ operations for short, and
pure queries, called Ξ operations.

There are certain connections between Z and our approach as well as no-
table differences. First of all Z as well as our approach use an automaton model
for the system description, but it is important to understand that the coun-
terpart to the state in a Z specification is not the state of the dialogue model,
but the current object net over the data model in form-oriented analysis. It is
the formchart, where form-oriented analysis goes beyond the Z specification
paradigm. In Z all operations are at first hand conceived as being applicable
at any time. In form-oriented analysis on the other hand operations are appli-
cable only if they are options of the current client page. Hence form-oriented
analysis offers a specification point for the availability of operations. One main
additional specification concept in form-oriented analysis is therefore the sup-
port of conditional accessibility of operations based on a finite state machine.
But beyond the finite automaton as such, form-oriented analysis offers support
for specifying constraints in the form of dialogue constraints. Form-oriented
analysis also offers support for conditional system response. Such conditional
response is a first-class concept in form-oriented analysis since in the form-
chart server actions can branch to different client pages. In Z such conditional



16.5 Structured Analysis 331

system response must be coded into the single response type. Hence the re-
turn type in Z must be an EITHER–OR type, built from the different response
types.

16.4.2 Direct Access to the Abstract Interface

Form-oriented analysis has in common with the model-oriented specification
approach the abstract machine system viewpoint. However, with respect to
the form-oriented user interface model we assume that the virtual machine is
not placed in an abstract environment, but that it has a direct interface to
the user. We call this concept the embedded virtual machine.

The form-oriented user interface model and the terminal concept con-
nected with this model have a pivotal role because they are supposed to
provide direct access for the user to the model. In that sense we call the
form-oriented interface a human–model interface – in contrast to the term
human–computer interface. The concept of the human-model interface is in
some sense also the counter-paradigm of the real-world modeling approach.
In the real-world modeling approach the relation between model and world
is established by an elusive connection, which is different from both. In our
approach the intuition behind the model is not a certain ontology, but a hy-
pothetical situation, namely the imagination of the completed model. The
semantics of the model are basically captured in the preamble:

“Suppose you sit in front of a new system. Then it will have the following
properties...”

The human–model interface concept makes sure that we have this kind
of unambiguity about how the model has to be understood. In that form
we can access the model, with the form-oriented interface as the connection.
This concept has to be seen in the wider framework of the embedded virtual
machine paradigm.

The embedded virtual machine adds a crucial specification element to an
abstract machine model or a data type definition. Those concepts are under-
stood as living in an abstract environment, e.g., as a purely mathematical
definition. The actual usage of such a model is by no means defined, as we
will explain below. The embedded virtual machine is a mathematical defini-
tion plus a clearly separated embedding specification. The embedding speci-
fication is naturally related to other non-functional specifications, and should
therefore be dealt with in the context of these non-functional demands.

16.5 Structured Analysis

Structured analysis [264, 85, 86, 263, 265] is a consistent approach for mod-
eling enterprise applications that has been proven by years of experience in



332 16 A Comparison of Modeling Methods

companies. Structured analysis methods are based on the elaboration of hier-
archical DFDs. Well-known structured analysis methods are the SADT (Struc-
tured Analysis and Design Technique) method [86, 201] and the standardized
IDEF0 (Integration Definition of Function Modeling) method [226]. We will
discuss structured analysis along the lines of the concrete method of modern
structured analysis [323], because it is a widespread method, too, and uses
convenient methods for the data modeling part. Structured analysis is in ex-
tensive use in the industry even today, and is used for both business modeling
and system modeling. The approach is well-suited for form-based tasks, as
can be seen by early the contributions [297], and it works especially well for
the analysis of combined manual and automatic processes.

16.5.1 Modern Structured Analysis

Early tutorials on structured analysis are [121, 122, 79]. Modern structured
analysis offers integration of a semantic data model and a data dictionary
with an asynchronous DFD. The asynchronous DFD has proven to be useful
in systems analysis. With respect to interfaces the asynchronous semantics of
such diagrams are known to lack important state-based semantics concerning
the timing of user interaction. The new interaction models of our method
provide exactly the missing state-based semantics, yet they are indeed much
more compatible with modern structured analysis than other state diagram
types.

Modern structured analysis defines several analysis-level artifacts, namely
leveled DFDs, data dictionaries, entity–relationship diagrams, pseudo-code –
called structured English – decision tables, and decision trees. They together
form the structured specification called the target document. The method is
deliberately ambiguous with respect to the semantics of the several notational
elements of the DFDs and therefore relies heavily on the intuition of the
modeler. Conditions for the mutual correctness of the diagrams are defined as
so-called balancing rules. The balancing rules cover type correctness rules as
well as name space rules.

16.5.2 Data Flow Diagrams

A DFD describes the data flow in the system between processes and other
instances. A DFD is a directed graph. Edges and nodes are labeled. There are
three kinds of nodes:

• Processes. Processes are data processing units. They are depicted by bub-
bles.

• Stores. Stores make up the system state. They are depicted by two parallel
horizontal lines.

• Terminators. Terminators serve as data sources and data sinks. They are
depicted by squares.



16.5 Structured Analysis 333

The edges are called flows. DFDs are typed, the type system being given by
the data dictionary concept. The labels on the edges and on stores represent
entries in the data dictionary. Terminators represent incoming or outgoing
data flows. Figure 16.2 shows a possible DFD for the login and registration
capabilities of a system like our example bookstore.

login
User

register

error-message

email-and-password

Customer

error-message

CurrentUser

user-id

customer-and-repeated-password

Fig. 16.2. Data flow diagram of a system login and registration feature

DFDs can be decomposed, see also Fig. 6.3. Only processes are subject to
decomposition. A single process can be replaced by a complete DFD called
the subdiagram. The dependency between edges connected to the process and
the terminators in the subdiagram is explained in a balancing rule: the data
flows connected to a process must be constructed from the data flows con-
nected to the terminators of the subdiagram for that process. DFDs can be
conceived as a concurrency model. The edges of the DFD represent pipes for
messages with a fixed type specified in the data dictionary. If a process has
two ingoing data flows, the diagram does not specify e.g., whether the pro-
cess needs messages each time from both ingoing flows or only one message
from an arbitrary ingoing flow [120]. This ambiguity is designed to focus de-
liberation on the aspects of pure typed flow of data. The decomposition of
DFDs is functional decomposition. Since the processes are decomposed by
subdiagrams, this resembles the specification of subprograms in programming
languages. However, the sub-DFDs cannot be reused in different places of the
specification. The hierarchical decomposition is hence only targeted at the
partitioning of the specification.

DFDs may seem superficially similar to formcharts, but are completely
different. While a formchart is bipartite, a DFD is not. In a DFD the dif-



334 16 A Comparison of Modeling Methods

ferent types of nodes may be combined freely. Moreover, the semantics of a
DFD are different from the formchart semantics. Especially the DFD is no
state diagram; on the contrary it exhibits parallelism and non-determinism as
explained above. There are no strict temporal relations between ingoing and
outgoing messages in a DFD. In a formchart obviously a state must be entered
before it can be left exactly once on exactly one outgoing edge. Furthermore
the decomposition mechanisms are completely different. While in DFDs a pro-
cess can be decomposed into a complete data flow itself, in formcharts such a
decomposition is neither intended nor possible.

16.5.3 Data Dictionary

The concept of a data dictionary plays a key role in structured analysis. The
data dictionary is a list of hierarchical data type definitions. Formally this
means that data dictionary entries are algebraic data types. Data dictionary
types represent messages sent along flows or stored in data stores. Data dic-
tionary entries are immutable values. A change to an entry in a store has to
be understood as an exchange of whole messages.

The data dictionary structured analysis resembles the user message model
of form-oriented analysis, but there is an important difference through the
concept of opaque references. In modern structured analysis there is actu-
ally a concept of keys, based on a naming convention, for integrating the
data dictionary with the semantic data model: keys are named like the entity
types with an additional symbol. In form-oriented analysis, the key concept
is transformed into a fully elaborated semantic concept in the form of the
opaque reference mechanism.

16.5.4 Object-Oriented Extensions of Structured Analysis

Given the success of structured analysis, some work has been done in con-
structing object-oriented extensions of structured analysis. The Object–Pro-
cess Methodology OPM [88, 89] deliberately avoids the partition of different
modeling artifacts in different diagrams and uses a joint representation of
processes and object-oriented information. It sets itself in contrast to object-
oriented modeling techniques as discussed in the next section. In the FOOM
methodology [275, 276] an object-oriented extension of structured analysis is
given in such a form that two initial diagram types are used, a class diagram
and a so-called OO-DFD. The authors of FOOM claim to gain superior results
in comparison with OPM [277]. These methods aim at employing the advan-
tageous elements from structured analysis as well as from object orientation
in a single method.



16.6 Object-Oriented Analysis and Design 335

16.6 Object-Oriented Analysis and Design

16.6.1 Object-Oriented Analysis

There are a remarkable number of different object-oriented analysis (OOA)
methods, e.g., [279, 54, 205, 284, 59]. OOA is based on the intuition that the
object-oriented metaphor, which was at this time already firmly introduced in
the programming languages world, can serve as a viable metaphor for analysis
as well.

Object-oriented analysis takes a different approach to system modeling
than structured analysis. Structured analysis proceeds by describing the key
functional processes in the problem domain and structuring them in the DFD.
The data model originally takes the form of a data dictionary that annotates
the DFD.

In object-oriented analysis according to Coad and Yourdon [54] the anal-
ysis starts by identifying the concepts of the problem domain, which are con-
ceived as classes of objects. Objects are seen as encapsulations of data in the
form of attributes. In a second step the interconnections of classes are elicited
in the form of associations and generalization hierarchies. Behavioral aspects
are identified in the next stage in the form of services offered by objects.

The results of object-oriented analysis vary strongly. Kamath et al report
significant advantages [179]. It has been observed in [200] that OOA is best
applied to a new project and does not work well with re-engineering of legacy
applications.

UML provides a modern, object-oriented modeling approach, which is pri-
marily used for design or especially for implementation purposes. In the anal-
ysis phase the primary role of UML is currently its use as a replacement for
ER diagrams, hence class diagrams are used in their reduction to data models.
UML as a universal modeling language is now well established: in February
2003 IBM announced the completion of its $2.1 billion acquisition of Rational
Software Corporation. A focus of the current discussion is on specialized mod-
eling languages built on the universal language UML [278, 18]. Such profiles
are now in the early stages of development.

16.6.2 The Origins of Object Orientation

Object orientation is in the first instance a programming language para-
digm. It was introduced by the language Simula [288, 185]. Simula started
as a discrete event simulation language – at the early stages its designers
Dahl and Nygaard also called it Monte Carlo Compiler [236]. Later the lan-
guage Smalltalk [156] developed at Xerox PARC took up the object-oriented
metaphor. In these days the Xerox PARC laboratory pushed the direct manip-
ulation interface [287], the mouse input device [112], and the window-based
interface [182]. A widespread viewpoint considers object-oriented program-
ming chiefly as a data abstraction technique [196].



336 16 A Comparison of Modeling Methods

Object orientation is indeed successful on the design and implementation
level. Object-oriented design (OOD) is especially relevant with respect to the
justification of OOA, since one of the main goals in a pervasive object-oriented
development process is to create synergies through the tight paradigmatic inte-
gration of the different development steps [48]. Several principles that describe
the advantages of OOD have been identified [55, 56, 192]. One important prin-
ciple is the Hollywood Principle don’t call us, we’ll call you, which refers to
the object-oriented style of customizing behavior by overwriting methods. An-
other key principle is the don’t ask what kind principle, which refers to the way
in which subtype polymorphism is used by client objects. Both principles sup-
port separation of concerns. Note that disciplined approaches to customizing
behavior – hooks or callbacks – are possible without object orientation.

The object-oriented paradigm is a mélange of the following notions:

• real-world simulation;
• vivid desktop metaphors;
• data abstraction;
• low coupling and high cohesion design.

The theory of object orientation, i.e., the semantics of object-oriented pro-
gramming languages, has turned out to be rather complicated [1, 2].

16.6.3 The Use-Case-Driven Approach

In the use-case-driven approach to OOA [174] use cases are employed in order
to describe the functionality of the user interface. However, it is now com-
monly agreed that interaction diagrams of the use cases describe the system
by examples, but do not yield a specification, i.e., a description of all possi-
ble system usages [74], which is often desired. The interaction models of our
method in contrast provide a true specification of the system.

OOA through a use-case-driven approach was popularized by Jacob-
son [174]. This approach begins by identifying use cases of the problem do-
main, together with actors which use them, in a coarse-grained diagram. A
use case diagram for the example bookstore is shown in Fig. 16.3. Use cases
are described by scripts that have the task of storyboarding scenarios of user
interaction [28]. The scripts are textual, sequential descriptions of user in-
teractions. Based on the use cases analysis classes are identified, especially
boundary objects, with which the actors are conceived to communicate. The
scripts can now be transformed to interaction diagrams showing the actors
enacting on the boundary classes [175, 188].

The use-case-driven approach may yield a description specification of an
analysis-level system interface description which is not a specification in the
strict sense. The system usage is described only through singular cases, which
are depicted in a sequential manner, e.g., as a message sequence chart. Message
sequence charts are expressively weak [73]. Furthermore the system usage



16.6 Object-Oriented Analysis and Design 337

login

logout

User change customer data

register

search

buy

browse categories

view shopping cart

system

manage shopping cart

Fig. 16.3. Jacobson-style use case diagram of the example bookstore. The content
of the use case diagram is similar to the bullet list on page 23

is depicted in a non-hierarchical manner. The interaction with form-based
systems is modeled as a fine-grained sequential activity [174]. Use-case-driven
modeling even for small examples becomes unwieldy.

The use-case-driven approach to object-oriented software engineering has
become a widely acclaimed analysis technique. From the beginning [267, 174]
to state-of-the-art versions [175] of this approach the recommended human
computer interface specification techniques have been oriented towards the
modeling of object-oriented GUIs and event-based user interfaces in contrast
to form-based interfaces. As a consequence the use-case-driven modeling ap-
proach does not have the two-staged structure of interaction as is introduced
for form-oriented analysis.

Use cases are defined as typical usages of the system. In a form-oriented
user interface model, the basic flow and the alternative flows of a use case
correspond to paths in the diagram. The complete diagram can be considered
as the compact notation of the set of all use cases. In form-oriented analysis
every use case is a feature.

16.6.4 User Interface Modeling Approaches with UML

Within the UML community the discussion about dealing with the user in-
terface is still underway [71]. UMLi [282] is a proposed visual language for
presenting user interfaces. The new artifacts are basically visualizations of
page components. The method is tightly coupled with the use-case-driven ap-



338 16 A Comparison of Modeling Methods

proach. Schwabe et al presented a diagrammatic tool for representing web in-
teraction in [301] and [302]. The diagrams are called user interaction diagrams
(UIDs). They resemble page transition diagrams without server actions. Very
restrictive and very specific annotations are placed on the transitions con-
cerning required selections by the user. A stereotype framework specifically
for web applications is presented in [61, 62] by Conallen. This approach allows
the design-level concepts appearing during web site development to be mod-
eled with a typical web application framework. For this purpose the Conallen
approach uses a set of stereotypes. The approach targets design rather than
analysis.

16.7 Model-Driven Architecture

Model-driven software development poses difficult semantic problems [132].
The Model-driven architecture is a set of specifications currently under

development by the OMG. This approach contains different specifications on
how to use UML models to generate code for different platforms. The model-
driven architecture does not specify which extent of model elements has to
be translated into the target platform. Tools which generate code skeletons
from these associations and attributes only can be subsumed under the model-
driven architecture, as well as tools which automatically translate certain OCL
annotations into code.

A goal for this approach is to use UML as a platform-independent notation
and to generate code for different platforms. One disadvantage, however, is
that this kind of platform independence is a subjective one. Indeed, if one takes
a closer look at the proposals, i.e., the platforms from which this approach
wants to abstract, one finds technologies like Java, which of course claim to be
platform independent themselves. This shows that platform independence is
a subjective viewpoint of one technology – in the views of other technologies,
though, this platform-independent technology then appears as a platform in
itself. Interestingly, this is not even a contradiction, it just shows that there is
one more platform, which is independent of other platforms. The problem is
only that many such platforms or technologies think that they themselves are
more than a platform, even to say above other platforms, at least concerning
the level of abstraction. However, developers of other platforms understand-
ably do not agree with this judgment – platform independence lies finally in
the eye of the beholder.

One basic problem here is that each of the newly emerging platform-
independent approaches is based on a simple translation approach. The ar-
gument is that, from the code provided in the new format, some code can be
generated in the other formats. The downside of this is, however, that they
provide no innovative argument why this new format is more than simply
another format adding to the complexity of our system landscape. In fact, a
look at today’s technology landscape shows quickly that the latter is simply



16.7 Model-Driven Architecture 339

the case. Hence platform independence is a fairly weak argument for any new
technology; it is rather a sales trick to get new customers. For establishing a
new technology there must be firmer arguments.

Another typical subtlety, which makes it easy to detract from some new
technology, is the comparison between a new technology’s vision and an old
technology’s reality. For the critical reader, it is important to realize that
such a comparison is basically unfair. The great vision of the new technol-
ogy, which did not have to experience all the problems of the reality, always
does sound easy and consistent and able to overcome all the problems of the
current system landscape. And, in fact, since the technology is not yet estab-
lished, no one actually know for sure whether it will encounter a problem, and
what this problem would be. So there is no possibility to compare the new
technology’s reality with the old technology’s reality. But there is of course
another possibility of a learned – and indeed fair – comparison: by comparing
the new technologies’ vision with the old technologies’ vision – with the ini-
tial ideas, as they were put forward when these technologies were introduced.
And then one would indeed see that these technologies, e.g., fourth generation
languages, already had most of the visionary goals a long time ago. In other
words, the pretender’s new clothes are often old hat – if not, some really novel
idea comes in.

There is a tendency within discussions on UML to move away from the
visual aspects of UML towards the metamodeling aspects. It may, however,
not be clear if this is really a fruitful development. This is because the de-
emphasizing of visual modeling which we have recommended as well is some-
thing different from using a visual language non-visually, or even demotivat-
ing visual modeling. A language designed for visual modeling is usually full
of support for visual modeling and is therefore not streamlined enough for
non-visual modeling. The visualization of models has advantages which must
not be diminished. Visualization is certainly an intuitive way of presentation
and in the case of UML it is obvious that it provides for many developers a
considerable fun factor, perhaps even supporting team spirit. It also provides
a more friendly appearance for many technical documents, and adds some
kind of authority to them. So diminishing these visualization aspects would
certainly reduce one of the values of the visual modeling approaches, perhaps
even the most important contribution of UML, even if this visual approach is
not an original contribution of UML, but of ER modeling.

The essence of de-emphasizing visual modeling is rather to keep the mod-
eling approach simple in itself, instead of tailoring it to a visual modeling
method. In that regard, this de-emphasizing does not fit UML. The meta-
model of UML is indeed best considered as the data model of a visual tool,
since it contains many concessions to the need for visual representation. In-
deed, the complexity of the metamodel is one of the reasons why UML has
become fairly obviously a platform of its own. One example in this regard is
the representation of the aspect whether an association is an aggregation or
composition or none of them. This is modeled with an attribute of enumera-



340 16 A Comparison of Modeling Methods

tion type in the association ends. Without going into the details of how this
works, it is important to point out that this approach already is not able to
capture multiple partial orders, for example, as is possible in the PD modeling
language we have introduced. UML instead supports only one partial order at
a time. Moreover, the particular metamodel of UML does provide consider-
ably fewer semantics than the PD approach with its much simpler structure
of having only constraints. In the PD modeling approach, for instance, ev-
ery constraint can be combined with every other constraint just by applying
both. In UML, however, in the case of aggregation/composition there is no
way of telling from the metamodel that the composition implies an aggrega-
tion. This leads to considerable semantic problems, especially if composition
and aggregation appear together in a diagram. These problems are obviously
not inherent problems of the described phenomena, but problems generated
by the particularities of the metamodel.

Another motivation for the model-driven architecture is the conception
that a UML model is more abstract than the target platforms, e.g., code. Al-
though one can argue that even abstraction is in the end sometimes a matter
of taste and therefore it is immediately legitimate to see UML as more ab-
stract, we want to investigate in which regard we can find substantial grounds
for doing so. In looking for hard reasons we want to exclude insufficient ones
beforehand. A format should not be called abstract alone

• because of being a generator input instead of a generator output. Hence
the fact that the generators in mind use UML as input and generate C#
as output does not prove that UML is more abstract.

• because it is visual in contrast to being ASCII-based.
• because it has another source code partitioning policy. That is, the fact

that in UML a model does have multiple classes in one file, while Java has
only one public class per file, does not mean that UML is more abstract.

• because it has another syntactical organization of the code. Hence the
fact that an association in the UML model is obviously accessible from all
participating classes does not create a higher abstraction than in program-
ming languages. Note that this opinion also implies that the basic element
of aspect-oriented programming is not per se an increase in abstraction,
even if it may be seen by some as a nice feature – there is no contradiction.

• because it contains only a syntactically defined subset of another format,
such as containing basically only a choice of the non-terminals slightly
transformed in another notation. That is, just because one part of UML
models, and perhaps the most popular part contains only signatures but
no code, does not mean it is more abstract.

The remaining candidates for why UML could be called more abstract are
the relational semantics incorporated from ER, the “design by contract” spec-
ification strategy with OCL, incorporated from Eiffel, or the dynamic binding
of object orientation. The sad thing is that these three elements are mutually
not sufficiently integrated. The relation-based semantics are not integrated



16.7 Model-Driven Architecture 341

with object orientation, because the state participation is undefined and the
relational semantics do not fit the encapsulation principle. OCL does not care
much about the object-oriented structure; instead it navigates along the core
ER diagram. However, OCL is not as powerful as the relational calculus, at
least not without workarounds using the metalevel.

Given a “design by contract” specification in a class, what is the impli-
cation of this specification for the subclasses? Our answer is based on the
Barbara-Liskov principle. The subclasses must fulfill stronger constraints. For
the application of this rule it is important not to use preconditions as such
since preconditions are not constraints; the notation with pre- and postcon-
ditions has to be translated into a single temporal constraint which combines
both parts and which has the form if(precondition)then postcondition.
The rule stated above that the constraints have to be stronger in subclasses
has to be applied to this constraint as a whole.

A rarely mentioned fact should be taken into account, namely that on
the specification level this demand is achievable purely syntactically. This
works by adding the constraint of the superclass by logical conjunction to the
constraint of the subclass. This again opens up another possibility: the demand
can be dropped and built into the semantics, stating that the conditions of the
superclasses remain. Under this rule, as one can see, dynamic binding looks
much different on the specification level than in the target platforms. While in
the target platforms the method of the superclass can be completely replaced,
the specifications can only be extended.

However, we have pinpointed one element in the feature set of UML, which
is more abstract in some sense than a programming language, and this is sim-
ply the fact that UML allows for declarative specifications. However, this
kind of abstraction has been around for a long time, and it has simply not
prevailed as a useful tool for typical industry programming projects. The cru-
cial problem is, and always has been, that it is so abstract that it is not
executable. There is no automatic tool to translate all the specifications into
code, as we mentioned earlier. As a consequence, e.g., regarding inheritance,
this means that the constraint conservation rule cannot be checked in pro-
gramming paradigms.

UML has added no new solutions for the problems, which have for decades
impeded any effort to use this specification technology in everyday project
work.

The advantage of our approach with regard to the model-driven archi-
tecture is that our approach has a defined notion of high-level programming
which can be translated to target platforms. The emphasis here is not on
providing yet another version of platform independence, but on abstracting
from technical details by the use of the high-level programming paradigm.
One instance of this is that our approach offers an integrated transactional
virtual machine model, tailoring it to fit enterprise systems modeling.



17

Summary

We want to summarize the concepts of form orientation. Form-oriented anal-
ysis is a holistic approach to software development of a certain ubiquitous
kind of system, which is characterized by our definition of submit/response
style interaction. Form-oriented analysis pursues a neutral concentration on
the everyday tasks of the working software developer. It integrates software
development best practices with a couple of entirely new concepts on the level
of an abstract software system viewpoint. Then concepts are derived on all
levels of technology. Form-oriented analysis introduces new artifacts, namely
page diagrams, form storyboards, and formcharts, which differ in formality
and expressiveness.

This book presented two kinds of contributions. The first kind concerns
the modeling process of submit/response style applications. The most impor-
tant contributions of this kind are summarized in Sect. 17.1. The second kind
of contributions concerns advances of a general nature. These advances go
beyond the immediate application within form-oriented analysis, but the ap-
plication of these concepts in form-oriented analysis is more than sufficient
justification of them. We summarize contributions of this kind in Sect. 17.2.

17.1 Contributions to Modeling Form-Based Systems

Form-oriented analysis brings the following benefits for the analysis of sub-
mit/response style systems:

Domain-Specific Modeling. Our modeling contributions start from a
defined application domain. The modeling methods are developed towards this
concrete area. We do not start out with the claim of presenting a universal
method, able to model all systems from embedded systems to computing grids.
Of course we can expect to find other application areas for our approaches.
But they will show up through time. This approach is therefore a more patient
one.



344 17 Summary

Black-Box Modeling at the User Interface. We follow a particularly
fundamental and mature approach to system modeling, namely the black-box
modeling approach. The interface of our black box is the user interface, hence
the only computer interface that can be touched by the user. In order to
make the black-box modeling work we have to define the human–computer
interaction paradigm we want to use, namely submit/response style systems.

Submit/Response Style Systems. The human–computer interaction is
modeled as a strictly alternating message exchange between user and system.
The system messages have the character of reports; they do not change once
they have been sent to the user. After submission of a form the next page is
shown automatically. In the submit/response style user interface model the
user action of providing a message to the system is intricately combined with
the previous system message in that the form is embedded into the report
and the presented information can be directly and symbolically reused by the
user. Submit/response style systems are successful, due to their advantageous
software system architecture, which fosters scalability and maintainability.

Two-Staged Interaction Paradigm. Submit/response style systems
are the natural solution for a wide range of business and administrative ap-
plications. Working with submit/response style systems has cognitive advan-
tages because of an inherently easy form metaphor. The next message the
user wants to send to the system appears as a form, which can be edited by
the user and then submitted. Therefore submit/response style systems fol-
low a two-staged interaction paradigm. The work is divided by single explicit
system interaction points into protected bunches of work concerning editing
single forms. Form-oriented analysis relies on defined user interface modeling
as an integral part of requirements specification and analysis. It exploits the
two-staged interaction paradigm to define bipartite state transition diagrams
for modeling user interfaces, namely form storyboards and formcharts.

Transparency of Page Interaction. In modeling the submit/response
style interface we have an elegant abstraction from the detailed workings of
the input devices. There is no need to model the fine-grained interaction of
the user with the page in order to fill out forms and to navigate between input
forms. This user interaction is transparent, i.e., the user and the modeler have
the impression that the user works directly on the form.

Direct Manipulation of Opaque References. The form metaphor
goes beyond the paper form metaphor, especially concerning the dealing with
references to entities in the system. The user can manipulate the references
abstractly, without seeing their internal representations, i.e., as numerical keys
or whatever. This knowledge not only can be used to create new widgets for
conventional browsers, it can also be used to create a novel integrated client
concept altogether.

Page Diagrams. How could you start working on a project developing a
web-based application? You could start by painting the system welcome page
on a blackboard. Then you could continue to paint more and more pages and
to connect them with arrows representing links or possible form submissions.



17.1 Contributions to Modeling Form-Based Systems 345

This would be a rational way to actuate modeling of a submit/response style
software system. Page diagrams offer a conceptual basis. Though natural,
the outlined process may quickly become bulky. But with a good concept
of model decomposition the process can be intuitively split into manageable
parts. Well-understood page diagram modeling will help. Page diagrams are
coarse-grained state transition diagrams.

Form Storyboards. Form storyboards are designed with respect to infor-
mal communication between domain experts and system analysts. The special
way that signatures of server actions are visualized as forms make form sto-
ryboards capable of serving as mock-up prototypes. Form storyboards can be
transformed into formcharts without structural friction.

Fully Typed Modeling. Using the fundamental concept of static typing
rigorously in the modeling approach pays off. The static types give an easy
interpretation of the finiteness of the state model. We can use the type system
itself as the definition language for pages as well as for forms. The type system
therefore replaces a markup language and immediately yields maximal sepa-
ration of content from presentation. The pure type description of the pages
and forms creates a user interface model, which is bare metal and high-level
at the same time. The consistent use of the type system also allows for an
unprecedented amount of reuse. For example, the same record definition may
be used in the page description, the form definition, the database model, as
well as in all mediating business operations.

Formcharts. Formcharts depict the bipartite state machine of a dialogue
model. They are used for rigorous software system specification. They are an-
notated with precise dialogue specifications and are integrated with a layered
data model.

Model Union. The defined model composition of form-oriented diagrams
is based on pure graph union. As a result, model pieces resulting from a
decomposition are again self-contained models. However, they are themselves
no model elements. The concept of model union we describe is simple yet
versatile. It keeps the management of the models orthogonal to the models.

Feature-Driven Approach. Consider the following simple system re-
quirement: the user wants to reach an overview page from everywhere. In
a use-case-based approach it is not obvious how to model this feature. A
use-case-driven requirement elicitation can easily fail in finding this feature.
The form-oriented diagrams introduce a notation for system state collections,
which enables modeling general features. Model decomposition ensures the
maintainability of features.

Layered Data Modeling. Form-oriented analysis explicitly admits non-
transparency for phenomena that are well understood and which can and must
be considered during early phases of software engineering. In form-oriented
analysis the data model is layered. It consists of an information model for
persistent data and a user message model for data that are exchanged during
human–system interaction. Data types of the information model have defined



346 17 Summary

semantics with respect to the message model: every information model type
implicitly introduces an opaque reference type.

Dialogue Specification. Dialogue specifications annotate the formchart.
They are written with respect to both the layered data model and the dia-
logue history. For every formchart element several kinds of specifications are
predefined and given semantics. Several kinds of specifications can be identi-
fied that constitute no specification overhead because they can be recovered
directly during system implementation.

Taking Transactions Seriously. Transactions are of crucial importance
for enterprise applications. The achievement of the sophisticated transactional
core technologies, the database and the transaction monitor, is the establish-
ment of a virtual machine, in which every transaction client has a virtual
serial view of the transactional core system. These transactional clients are
supposed to finish transactions quickly and automatically. The transactional
paradigm has such serious implications that it dominates the system archi-
tecture. Many universal modeling techniques fail to address transactionality
with adequate high priority. Our modeling method gives the transactional
paradigm a central and leading role. In a strict ranking of priorities it is de-
cided that nice metaphors like object orientation are not of great use if there
is no clear compatibility with transactionality.

Dialogue Patterns. Form-oriented analysis is not about modeling bot-
tle receivers, traffic lights, coffee machines, elevators, etc. The world of form
orientation is the mundane world of forms, i.e., purchase orders, receipts, in-
voices, etc. What are the workflow patterns dealing with these entities with
respect to human–computer interactions? Form orientation enables the for-
mulation of such dialogue patterns: from the outset examples from real-world
enterprise applications are provided.

Forward and Reverse Engineering of Presentation Layers. The
language Angie is a specification language for web-based presentation layers
that is oriented towards the NSP type system. The language Angie can be
seen as a textual format of formcharts. It is exploited by the tools JSPick and
Angie. The JSPick tool is a design recovery tool for Java Server Pages based
web presentation layers. JSPick generates high-level system descriptions in an
Angie dialect. The Angie tool generates a complete Java Server Pages based
prototypical dialogue from a high-level system description.

Strongly Typed Server Pages. The NSP technology is a server pages
technology that is fully integrated with the concepts of form-oriented analysis.
A notion of correctness is defined that can be statically checked and ensures
a type-safe interplay of generated forms and targeted server pages as well as
the generation of valid documents with respect to a defined user interface
description language. A formal definition of the static semantics of the NSP
technology has been given as a Per Martin-Löf style type system.



17.2 Contributions to Modeling in General 347

17.2 Contributions to Modeling in General

Artifact Orientation. We do not prescribe a process. Instead we pursue
artifact orientation from the outset. Well-understood artifacts are a key in
software development in their own right. The implicit objective of some state-
of-the-art software processes is to decouple artifacts from processes, however,
resulting in sometimes complex, e.g., spiral or two-dimensional structures.
Despite defined tailoring, some of these processes tend towards clumsy pre-
scriptiveness and micro management. There are a great many project driving
forces. They are different in every project. We doubt that it is possible to have
a general purpose software development process, unless it is ultra-lightweight.
Artifact orientation is about posing a permanent question: how to proceed in
order to contribute most effectively to the growth and quality of a defined
project-dependent artifact set.

High-Level Programming. A constraint-based specification is in gen-
eral not executable. It can be incomplete, unique, or unsatisfiable. Moreover,
it can be redundant. The satisfiability is in general not a mechanically decid-
able question. This not only limits automatic generation of systems, it may
also be unwanted from a modeling point of view, since both the generator
and the modeler may find it hard to understand some models. High-level pro-
gramming refers to the concept of having a programming paradigm on the
same level as the constraint specification paradigm, which allows a guaran-
teed unique and executable specification to be given. This is in many cases
the more natural definition, e.g., for a simple insert operation the specification
with pre- and postconditions can be cumbersome in comparison to an insert
command. Imperative-style programming is not necessarily less abstract than
declarative.

Business Logic Modeling. Our modeling method gives an implicit defi-
nition of what business logic is supposed to be. The models in our method are
business logic. These models contain only information on the abstraction level
of business programming. Our models can be viewed as being executable on a
virtual business machine. This virtual business machine is in fact a worldwide
net of businesses interacting with each other and with their clients. Our mod-
eling method presents a logical view on applications, just as SQL provides
a logical view on data. Business modeling forms a defined abstraction layer.
We propose to use business modeling as a fixed part of an artifact-oriented
software development approach. It is the core of the functional specification
of a system.

Business Logic Programming. The combination of the concepts of
business modeling and high-level programming is business logic programming.
It can be seen as the continuation of the concept of fourth generation languages
for enterprise applications. It is a conceptual abstraction from and consequent
extension of 4GLs towards non-proprietary solutions, whereas 4GLs have be-
come typically product-specific solutions.



348 17 Summary

The Business Web. The basic programming paradigm and therefore the
virtual machine of our high-level programming approach is the transactional
business network, the business web. This is a virtual distributed execution
platform that spans organizations. We have identified message-based commu-
nication as the feasible paradigm which allows the realization of the virtual
machine on current platforms. The abstract machine model consists of a set
of automata, which represent enterprise systems, and which communicate by
messages. This network and automaton model allow a transactional coupling
of systems so that each message to an automaton is processed in a local trans-
action on this automaton.

Non-Universal Programming. By avoiding WHILE type loops or
freestyle recursion a high-level programming paradigm can even be made
total, i.e., programs always terminate. This non-Turing-universality can be
found, for example, in SQL. Even if the restrictions found there may be too
restrictive, it must be said that typical classes of business logic do not need
computational universality. A high-level programming paradigm can help in
making it necessary to explicitly enable higher complexity classes.

Transactional Programming. The high-level programming paradigm
of choice for transactional applications is imperative in its style, but due to
the possibility of user aborts this paradigm goes beyond other imperative
paradigms in crucial aspects. The same has to be said with respect to the
update commands themselves, which have concurrent semantics not found in
many other imperative programming paradigms.

State History Diagrams. State history diagrams unify statecharts and
class diagrams. The visit of a state implicitly causes the instantiation of an
object, so that the history of a state machine run is given by a history object
path. This log warehouse is used in form-oriented analysis to give precise
though still lightweight semantics to the temporal aspects of the dialogue
constraint language.

History Log Warehouse. Many typical tasks in enterprise applications
can be seen as accessing logged data, i.e., write-only data. The history log
warehouse is an operational approach to temporal modeling, which identifies
executable temporal queries. It serves as a basis for a fundamental under-
standing of business logic patterns. It allows a more regular business logic
design.

Integrated Source Code Model. The models and programs are seen
as data and are therefore instances of ordinary data types. The modeling
methods including the form-oriented interface can be used to define source
code manipulation on a high level. The integrated source code model can
abstract from many problems like name collisions.

Bipartite Modeling of Finite Aspects. The bipartite modeling we
have introduced for formcharts is valuable for all finite state modeling prob-
lems, where the finite state model is only an aspect of the system and is
accompanied by a more complex system model. As a complex state we see
every system, which is described by a data model and actual algorithms act-



17.2 Contributions to Modeling in General 349

ing on the data model. The specification of such finite state behavior by a
bipartite state machine enforces the separation of concerns. The finite state
machine alternates between receptive states, which listen for the next event,
and reactive states, which react to an event and are left automatically in or-
der to return to a receptive state. These bipartite finite state models have the
natural property that a single event type leads to a single transition from a
receptive to a reactive state. The bipartite structure actually models a fact of
the system, namely that the system does change the state with the reception
of the event. The bipartite model pays tribute to the fact that in the addressed
type of complex systems the reaction is indeed a computation and therefore
extended in time, even if it is terminated automatically. Bipartite modeling is
the cornerstone of the user interface model of form-oriented analysis.



References

1. M. Abadi, L. Cardelli. A Theory of Primitive Objects – Untyped and First-
Order Systems. In: Proceedings of the International Conference on Theoretical
Aspects of Computer Software, LNCS 789. Springer, 1994, pp.296–320.

2. M. Abadi, L. Cardelli. A Theory Of Objects. Springer, 1996.
3. A. Abran, J.W. Moore, P. Bourue, R. Dupuis (Eds.). SWEBOK – Guide to the

Software Engineering Body of Knowledge, Trial Version 1.00. IEEE Press, May
2001.

4. D.H. Akehurst, B. Bordbar. On Querying UML Data Models with OCL. In:
The Unified Modeling Language, Modeling Languages, Concepts, and Tools,
4th International Conference, LNCS 2185. Springer, 2001.

5. B. Alabiso. Transformation of Data Flow Analysis Models to Object Oriented
Design. In: Proceedings of the Conference on Object-Oriented Programming
Systems, Languages and Applications 1988 (OOPSLA 1988). ACM Press, 1988.

6. C. Alexander. A Pattern Language – Towns, Buildings, Construction. Oxford
University Press, 1977.

7. C. Alexander. Patterns in Architecture. Keynote Speech, OOSPLA ’96 – Object-
Oriented Programming, Systems, Languages, and Applications. Conference
Video, 1996.

8. G. Alonso, F. Casati, H. Kuno, V. Machiraju.Web Services – Concepts, Archi-
tectures and Applications. Springer, 2004.

9. R.M. Amadio, L. Cardelli. Subtyping Recursive Types. ACM Transactions on
Languages and Systems, vol. 15, no. 4., pp.575–631, September 1993.

10. K.W. Angell. Python Server Pages (PSP), Part I. Dr. Dobbs Journal, January
2000.

11. G. Antoniol, G. Canfora, G. Casazza, A.D. Lucia. Web site reengineering using
RMM. In: Proceedings of the International Workshop on Web Site Evolution,
pp.9–16, March 2000.

12. Aristotle. Metaphysics.
13. Aristotle. Poetic.
14. Aristotle. Rhetoric.
15. D. Atkins et al. Integrated Web and Telephone Service Creation. Bell Labs

Technical Journal, vol. 2, no.1, 1997.
16. D. Atkins et al. Experience with a Domain Specific Language for Form-based

Services. Software Production Research Department, Bell Laboratories, Lucent
Technologies, 1997.



352 References

17. D. Atkins et al. Mawl: a domain-specific language for form-based services. In:
IEEE Transactions on Software Engineering, vol. 25, no. 3, pp.334–346, 1999.

18. C. Atkinson, T. Kühne. Strict Profiles: Why and How. Proceedings of
UML’2000, LNCS 1939. Springer, 2000.

19. H.P. Barendregt. Lambda Calculi with Types. In: S. Abramsky, D.V. Gabbay,
T.S.E. Maibaum (Eds.), Handbook of Logic in Computer Science, vol. 2, pp.118–
331. Clarendon Press, 1992.

20. K. Beck. Extreme Programming Explained – Embrace Change. Addison-Wesley,
2000.

21. H.D. Benington. Production of Large Computer Programs. In: Proceedings of
the ONR Symposium on Advanced Programming Methods for Digital Comput-
ers, June 1956.

22. T. Berners-Lee, D. Connolly. Hypertext Markup Language – 2.0, RFC 1866.
Network Working Group. November 1995.

23. P.A. Bernstein, E. Newcomer. Principles of Transaction Processing – For the
Systems Professional. Morgan Kaufmann, 1997.

24. P.V. Biron, A. Malhotra. XML Schema Part 2: Datatypes. W3C Recommenda-
tion, May 2001.

25. D. Bjørner, C.B. Jones (Ed.). The Vienna Development Method: The Meta-
Language. LNCS 61. Springer, 1978.

26. B.W. Boehm. A spiral model of software development and enhancement. IEEE
Computer, vol. 21, no. 5, pp.61–72, 1988.

27. B.W. Boehm et al. Software Cost Estimation with Cocomo II. Prentice Hall,
2000.

28. G. Booch. Object-Oriented Analysis and Design, Benjamin/Cummings, 1994.
29. J.R. Borck. WebSphere Studio Application Developer 4.0. JavaWorld, March

2003.
30. D. Box et al. Simple Object Access Protocol (SOAP) 1.1 – W3C Note, May

2000.
31. T. Bray, J. Paoli, C.M. Sperberg-McQueen, Eve Maler. Extensible Markup Lan-

guage (XML) 1.0 (Second Edition). World Wide Web Consortium, 2000.
32. F.P. Brooks. The Mythical Man-month – Essays on Software Engineering.

Addison-Wesley, 1975.
33. Frederick P. Brooks. No Silver Bullet – Essence and Accidents of Software En-

gineering. IEEE Computer, vol.20, no.4, April 1987.
34. D. Budgen, S. Burgees. A Simple Tool for Temporal Indexing of Hypertext

Documents. In: IEEE Computer, vol. 31, pp.52–53, December 1998.
35. M.H. Butler. Current Technologies for Device Independence – HP Labs Techni-

cal Report HPL-2001-83. Hewlett-Packard Company, April 2001.
36. D. Cabeza, M. Hermenegildo. WWW Programming using Computational Logic

Systems (and the PILLOW/CIAO Library). In: Proceedings of the Workshop on
Logic Programming and the WWW, in conjunction with WWW6, April 1997.

37. D. Cabeza, M. Hermenegildo. The PiLLoW Web Programming Library Refer-
ence Manual. The CLIP Group, School of Computer Science, Technical Univer-
sity of Madrid, 2000.

38. D.M. Campbell, B.Czejdo, D.W. Embley. A Relationally Complete Query Lan-
guage for an Entity-Relationship Model, In: Proceedings of the 4th International
Conference on Entity-Relationship Approach, pp.90–97, October 1985.

39. L. Cardelli. Type systems. In: Handbook of Computer Science and Engineering.
CRC Press, 1997.



References 353

40. L. Cardelli, P. Wegner. On Understanding Types, Data Abstraction, and Poly-
morphism. In: Computing Surveys, Vol. 17, No. 4, pp. 471–522. ACM, 1985.

41. F. Cardone, M. Coppo. Type Inference with Recursive Types: Syntax and Se-
mantics. Information and Computation, vol. 92, no. 1, pp. 48–80, 1990.

42. R.G.G. Cattell (Ed.). The Object Database Standard: ODMG 2.0. Morgan
Kaufmann, 1997.

43. M.V. Cengarle, A. Knapp. A Formal Semantics for OCL 1.4. In: The Unified
Modeling Language, Modeling Languages, Concepts, and Tools, 4th Interna-
tional Conference, LNCS 2185. Springer, 2001.

44. Central Computer and Telecommunications Agency. IT Infrastructure Library
– Service Support. Renouf, 2000.

45. S. Ceri, P. Fraternali, S. Paraboschi. Web Modeling Language, (WebML): a
modeling language for designing Web sites. Proceedings of the 9th. International
World Wide Web Conference, Elsevier, 2000, pp.137–157.

46. S. Ceri, P. Fraternali, A. Bongio, A. Maurino. Modeling data entry and opera-
tions in WebML, WebDB 2000, Dallas, 2000.

47. A.F. Chalmers. What is This Thing Called Science? University of Queensland
Press, 1999.

48. D. de Champeaux, L. Constantine, I. Jacobson, S. Mellor, P. Ward, E. Yourdon.
PANEL: Structured Analysis and Object Oriented Analysis. In: Proceedings of
ECOOP/OOPSLA’90. ACM Press, 1990.

49. P.P.-S. Chen. The Entity-Relationship Model – Toward a Unified View of Data.
ACM Transactions on Database Systems, vol.1, no.1, pp.9–36, March 1976.

50. E.J. Chikofsky, J.H. Cross, II. Reverse engineering and design recovery: A tax-
onomy. IEEE Software, pp.13–17, January 1990.

51. E. Christensen, F. Curbera, G. Meredith, S. Weerawarana. Web Services De-
scription Language (WSDL) 1.1. Ariba, International Business Machines Cor-
poration, Microsoft. July 2001.

52. J. Clark, S. DeRose. XML Path Language (XPath) Version 1.0 – W3C Recom-
mendation 16. World Wide Web Consortium, November 1999.

53. T. Clark, J. Warmer (Eds.). Object Modeling with the OCL: the Rationale
behind the Object Constraint Language. LNCS 2263. Springer, 2002.

54. P. Coad, E. Yourdon. Object-Oriented Analysis. Prentice Hall, 1990.
55. P. Coad. Object Models – Strategies, Patterns, and Applications. Yourdon Press,

1995.
56. P. Coad, D. North, M. Mayfield. Strategies and Patterns Handbook. Object

International, Inc. 1997.
57. K.A.L. Coar, D.R.T Robinson .The WWW Common Gateway Interface – Ver-

sion 1.1, Internet-draft, June 1999.
58. E.F. Codd. The Relational Model for Database Management: Version 2.

Addison-Wesley, 1990.
59. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, P. Jeremes.

Object-Oriented Development – The FUSION Method. Prentice Hall, 1994.
60. B.P. Collins, J.E. Nicholls, I.H. Sørensen. Introducing Formal Methods: the

CICS experience with Z. Technical Report TR 12.2777, IBM Hursley Park,
December 1990.

61. J. Conallen. Modeling Web Application Architectures with UML. Communica-
tions of the ACM, vol. 42, no. 10, pp.63–70, 1999.

62. J. Conallen. Building Web Applications with UML. Addison Wesley, 2003.



354 References

63. D.W. Connolly. Document Type Definition for the HyperText Markup Lan-
guage, level 2. World Wide Web Consortium, 1995.

64. S. Cook, J. Daniels. Designing Object Systems: Object-Oriented Modeling with
Syntropy. Prentice Hall, 1994.

65. S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, A. Wills. The Ams-
terdam Manifesto on OCL. Object Modeling with the OCL – The Rationale
behind the Object Constraint Language, pp. 115–149. Springer, 2002.

66. B. Courcelle. Fundamental Properties of Infinite Trees. In: Theoretical Com-
puter Science 25, pp.95–169. North-Holland, 1983.

67. P. Cousot. Program Analysis: The Abstract Interpretation Perspective. SIG-
PLAN Notices, vol. 32, pp.73–76, 1997.

68. K. Cox, T. Ball, J.C. Ramming. Lunchbot: A tale of two ways to program web
services. Technical Report BL0112650-960216-06TM, AT&T Bell Laboratories,
1996.

69. K. Crary, R. Harper, S. Puri. What is a recursive module? In: Proceedings of
the ACM Conference on Programming Language Design and Implementation,
pp.50–63, May 1999.

70. D. Crocker P. Overell (Eds.). Augmented BNF for Syntax Specifications: ABNF.
RFC 2234. Network Working Group, November 1997.

71. J.F. e Cunha, N.J. Nunes. Towards a UML Profile for Interaction Design: The
Wisdom Approach. Proceedings of UML’2000, LNCS 1939, Springer 2000.

72. K. Czarnecki, U. Eisenecker. Generative Programming – Methods, Tools, and
Applications. Addison-Wesley, 2000.

73. W. Damm, D. Harel. LSCs: Breathing Life Into Message Sequence Charts. Tech-
nical Report CS98-09, The Weizmann Institute of Science, Dept. of Applied
Mathematics and Computer Science, April 1998.

74. W. Damm, D. Harel. LSCs: Breathing Life Into Message Sequence Charts. For-
mal Methods in System Design, vol. 19, pp.45–80, 2001.

75. J.D. Davidson, S. Ahmed. Java Servlet Specification, v2.1a. Sun Press, 1999.
76. J.D. Davidson, D. Coward. Java Servlet Specification, v2.2. Sun Press, 1999.
77. M. Davis. Struts, an open-source MVC implementation. IBM developerWorks,

February 2001.
78. P. Delisle. Java Server Pages Standard Tag Library – version 1.0. Sun Microsys-

tems, June 2002.
79. T. DeMarco. Structured Analysis and System Specification. Prentice Hall, 1979.
80. B. Demo, A. DiLeva, P. Giolito. An Entity-Relationship Query Language. In:

Proceedings of the IFIP WG8.1 Working Conference on Theoretical and Formal
Aspects of Information Systems, pp.19–32. North-Holland, 1985.

81. B. Demuth, H. Hussmann, S. Loecher. OCL as a Specification Language for
Business Rules in Database Applications. In: The Unified Modeling Language,
Modeling Languages, Concepts, and Tools, 4th International Conference, LNCS
2185. Springer, 2001.

82. S. DeRose, E. Maler, D. Orchard. XML Linking Language (XLink) Version 1.0
– W3C Recommendation. World Wide Web Consortium, June 2001.

83. A. van Deursen, P. Klint, J. Visser. Domain-Specific Languages: An Annotated
Bibliography. ACM SIGPLAN Notices, vol. 35, no. 6, pp.26–36, June 2000.

84. Deutsches Institut für Normung. Deutsche Industrienorm DIN 66001. Sinnbilder
für Datenfluß und Programmablaufpläne. DIN, September 1966.

85. M.E. Dickover. Principles of Coupling and Cohesion for Use in the Practice of
SADT. Technical Publication 039. SofTech Inc., 1976.



References 355

86. M.E. Dickover, C.L. McGowan, D.T. Ross. Software design using SADT. In:
Proceedings of the 1977 Annual Conference. ACM Press, 1977, pp. 125–133.

87. E.W. Dijkstra. Go to statement considered harmful. Communications of the
ACM, vol. 11, no. 3, pp.147–148, 1968.

88. D. Dori, M. Goodman. From Object-Process analysis to Object-Process design.
Annals of Software Engineering, vol. 2, pp.25–50, 1996.

89. D. Dori. Object-Process Methodology applied to modeling credit card transac-
tions. Journal of Database Management, vol. 12, no. 1, pp.4–14, 2001.

90. D. Draheim, G. Weber. An Introduction to Form Storyboarding. Technical Re-
port B-02-06, Institute of Computer Science, Freie Universität Berlin, March
2002.

91. D. Draheim, G. Weber. An Introduction to State History Diagrams. Technical
Report B-02-09, Institute of Computer Science, Freie Universität Berlin, March
2002.

92. D. Draheim, G. Weber. Form Charts and Dialogue Constraints. Technical Re-
port B-02-08, Institute of Computer Science, Freie Universität Berlin, March
2002.

93. D. Draheim, G. Weber. Strongly Typed Server Pages. In: Proceedings of the 5th
Workshop on Next Generation Information Technologies and Systems, LNCS
2382. Springer, 2002.

94. D. Draheim, E. Fehr, G. Weber. JSPick – A Server Pages Design Recovery Tool.
In: Proceedings of the 7th European Conference on Software Maintenance and
Reengineering. IEEE Press, 2003.

95. D. Draheim, G. Weber. Storyboarding Form-Based Interfaces. In: Proceedings
of INTERACT 2003 – the 9th IFIP TC13 International Conference on Human-
Computer Interaction. IOS Press, 2003.

96. D. Draheim, E. Fehr, G. Weber. Improving the Web Presentation Layer Archi-
tecture. In: X. Zhou, Y. Zhang, M.E. Orlowska (Eds.), Web Technologies and
Applications, LNCS 2642. Springer, 2003.

97. D. Draheim, G. Weber. Modeling Submit/Response Style Systems with Form
Charts and Dialogue Constraints. In: Proceedings of the Workshop on Hu-
man Computer Interface for Semantic Web and Web Applications, LNCS 2889.
Springer, 2003.

98. D. Draheim, C. Lutteroth, G. Weber. Factory: Statically Type-Safe Integration
of Genericity and Reflection. In: Proceedings of the 4th International Confer-
ence on Software Engineering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing. ACIS, 2003.

99. D. Draheim, C. Lutteroth, G. Weber. An Analytical Comparison of Generative
Programming Technologies. Technical Report B-04-02, Institute of Computer
Science, Freie Universität Berlin, January 2004.

100. D. Draheim, G. Weber. Specification and Generation of Model 2 Web Inter-
faces. In: Proceedings of the 6th Asia-Pacific Conference on Computer-Human
Interaction. LNCS 3101 Springer, 2004.

101. D. Draheim, G. Weber. Co-Knowledge Acquisition of Software Organizations
and Academy. In: Proceedings of the 6th International Workshop on Learning
Software Organisations. LNCS 3096. Springer, 2004.

102. D. Draheim, C. Lutteroth, G. Weber. Source Code Independent Reverse Engi-
neering of Dynamic Web Sites. Technical Report B-04-10, Institute of Computer
Science, Freie Universität Berlin, June 2004.



356 References

103. D. Draheim, C. Lutteroth, G. Weber. Generator Code Opaque Recovery of
Form-Oriented Web Site Models. In: Proceedings of the 11th IEEE Working
Conference on Reverse Engineering. IEEE Press, 2004.

104. D. Draheim, G. Weber. The Data Access Languages DAL and TDAL. Re-
search Report UoA-SE-2004-2, Department of Computer of Computer Science,
University of Auckland, October 2004.

105. M. Dubinko, S. Schnitzenbaumer, M. Wedel, D. Raggett. XForms Require-
ments – W3C Working Draft. World Wide Web Consortium, April 2001.

106. M. Dubinko, L.L. Klotz, R. Merrick, T.V. Raman. XForms 1.0. – W3C Working
Draft. World Wide Web Consortium. August 2002.

107. ECMA – European Computer Manufacturer’s Association. Standard ECMA-
262 – ECMAScript Language Specification. ECMA Standardizing Information
and Communication Systems, 1999.

108. R. Elmasri, G. Wiederhold. GORDAS: A Formal High-Level Query Language
for the Entity-Relationship Model. In: Proceedings of the 2nd Conference on the
Entity-Relationship Approach to Information Modeling and Analysis. North-
Holland, 1981.

109. M.A. Emmelhainz. EDI: A Total Management Guide. Van Nostrand Reinhold,
1993.

110. G. Engels, M. Gogolla, U. Hohenstein, K. Hulsmann, P. Lohr-Richter, G. Saake,
H.-D. Ehrich. Conceptual modeling of database applications using an extended
ER model. Data & Knowledge Engineering, vol. 9, no. 4, pp.157–204, 1992.

111. G. Engels, U. Hohenstein. SQL/EER – Syntax and Semantics of an Entity-
Relationship-Based Query Language. In: Information Systems, vol. 14, no. 3,
pp.209–242, 1992.

112. W.K. English, D.C. Engelbart, M.L. Berman. Display Selection Techniques for
Text Manipulation. IEEE Transactions on Human Factors in Electronics, vol.
8, pp.5–15, 1967.

113. R.T. Fielding, J. Gettys, J.C. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. IETF – Net-
work Working Group, The Internet Society, June 1999.

114. D. Flanagan. JavaScript: The Definitive Guide. O’Reilly, 2002.
115. J. Foreman, K. Brune, P. McMillan, R. Rosenstein. Software Technology Re-

view. Software Engineering Institute, Carnegy Mellon University, July 1997.
116. M. Fowler. UML Distilled – Applying the Standard Object Modeling Language.

Addison-Wesley, 1997.
117. M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, 1997.
118. A. Gal, J. Mylopoulos. Towards Web-Based Application Management Systems

IEEE Transactions on Knowledge and Data Engineering, vol. 13, no. 4, pp.
683–702, 2001.

119. E. Gamma et al. Design Patterns. Addison-Wesley, 1995.
120. C. Gane. Rapid Systems Development Using Structured Techniques and Rela-

tional Technology. Prentice Hall, 1989.
121. C. Gane, T. Sarson. Structured Systems Analysis: Tools & Techniques. Im-

proved System Technologies. New York, 1977.
122. C. Gane, T. Sarson. Structured Systems Analysis: Tools & Techniques. Prentice

Hall, 1979.
123. V. Gapayev, M.Y. Levin, B.C. Pierce. Recursive Subtyping Revealed. SIG-

PLAN Notices, vol. 35, no. 9., pp.221–231. ACM Press, 2000.



References 357

124. Gartner Group. Survey Results: The Real Cost of E-Commerce Sites. Gartner
Group, 1999.

125. M. Gogolla, M. Richters. On Constraints and Queries in UML. The Unified
Modeling Language – Technical Aspects and Applications, Physica-Verlag, 1998,
pp.109–121.

126. J.A. Goguen, J.W. Thatcher, E.G. Wagner. An Initial Algebra Approach to
the Specification, Correctness and Implementation of Abstract Data Types. IBM
Research Report RC 6487, 1976.

127. J. Gosling, B. Joy, G. Steele, G. Bracha: The Java Language Specification.
Addison-Wesley, 1996.

128. M. Grand. Patterns in Java – A Catalog of Reusable Design Patterns. Wiley,
1998.

129. P. Graunke, S. Krishnamurthi, S. van der Hoeven, M. Felleisen. Programming
the web with high-level programming languages. In European Symposium on
Programming, 2001.

130. J. Gray, A. Reuter. Transcation Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

131. M. Green. A Survey of Three Dialogue Models. ACM Transactions on Graphics,
vol. 5, no. 3, pp.244–275, 1987.

132. M. Große-Rhode. Semantic Integration of Heterogeneous Software Specifica-
tions. Springer, 2004.

133. J. Grundy, N. Zhu, J. Hosking. Pounamu: a meta-tool for multi-view visual
language environment construction. In: Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing. IEEE Press, 2004.

134. C.A. Gunter. Semantics of Programming Languages – Structures and Tech-
niques. The MIT Press, 1992.

135. H. Haas, D. Orchard. Web Services Architecture Usage Scenarios – W3C Work-
ing Draft. World Wide Web Consortium, July 2002.

136. F. Halasz, M. Schwartz. The Dexter hypertext reference model. Communica-
tions of the ACM, vol. 37, no. 2, pp.30–39, February 1994.

137. G. Hamilton (Ed.). Java Beans version 1.0.1. Sun Microsystems, July 1997.
138. M. Hanus. Server side Web scripting in Curry. In Workshop on (Constraint)

Logic Programming and Software Engineering (LPSE2000), London, July 2000.
139. M. Hanus. High-level server side Web scripting in Curry. In: Practical Aspects

of Declarative Languages, Proceedings of the 3rd International Workshop, LNCS
1990. Springer, 2001.

140. D. Harel. Statecharts: a Visual Formalism for Complex Systems. Science of
Computer Programming, Elsevier Science, 1987, pp.231–274.

141. D. Harel, A. Naamad. The Statemate Semantics of Statecharts. ACM Trans-
actions on Software Engineering and Methodology, vol. 5, no. 4, pp.293–333,
1996.

142. A.E. Hassan, R.C. Holt. Towards a Better Understanding of Web Applica-
tions. Proceedings of WSE 2001: International Workshop on Web Site Evolution,
November 2001.

143. A.E. Hassan, R.C. Holt. Architecture Recovery of Web Applications. Proceed-
ings of ICSE 2002: International Conference on Software Engineering, May 2002.

144. A.E. Hassan, R.C. Holt. A Visual Architectural Approach to Maintaining Web
Applications. Annals of Software Engineering – Volume 16 – Special Volume on
Software Visualization, 2003.



358 References

145. I.J. Hayes. Applying Formal Specification to Software Development in Industry.
IEEE Transactions on Software Engineering, vol. 11, no. 2, pp.169–178, 1985.

146. P.J. Hayes. Executable Interface Definitions Using Form-Based Interface Ab-
stractions. Advances in Human-Computer Interaction, vol. 1, pp.161–189, 1985.

147. I. Hayes. Specification Case Studies. Prentice Hall, 1993.
148. I. Hayes, C.B. Jones, J.E. Nicholls. Understanding the differences between

VDM and Z. Newsletter of the British Computing Society, Formal Aspects of
Computing Science Special Interest Group and Formal Methods Europe, series
I, vol. 1, no. 1, pp.7–30, Autumn 1993.

149. C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communica-
tions of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

150. P. Hudak, P. Wadler (Eds.). Report on the Programming Language Haskell
Version 1.1. Computer Science Departments, Glasgow University and Yale Uni-
versity, August 1991.

151. J. Hughes. Generalising Monads to Arrows. Science of Computer Programming,
vol. 37, pp.37–111, 2000.

152. R. Hull, R. King. Semantic database modeling: Survey, applications, and re-
search issues. ACM Computing Surveys, vol. 19, no. 3, pp.201–260, 1987.

153. IBM Object-Oriented Technology Center. Developing Object-Oriented Soft-
ware – An Experience-Based Approach. Prentice Hall, 1997, out of print.

154. IBM Corporation. Flowcharting Techniques. Technical Publication C20-8152-
1, IBM Corporation, 1969.

155. IBM Corporation Software Group. Sabre Turns TPF Data into Business Asset
with WebSphere MQ. IBM Corporation, 2002.

156. D. Ingalls. The Smalltalk-76 Programming System. In: Proceedings of the
5th Annual ACM Symposium on Principles of Programming Languages. ACM
Press, 1987.

157. Institute of Electrical and Electronics Engineers. IEEE Standard 610.12-1990,
IEEE Standard Glossary of Software Engineering Terminology, Software Engi-
neering Standards Committee of the IEEE Computer Society, New York, 1990.

158. Institute of Electrical and Electronics Engineers. IEEE Standard 830-1993,
Recommended Practice for Software Requirements Specifications, Software En-
gineering Standards Committee of the IEEE Computer Society, New York, 1993.

159. International Function Point User Group. Function Point Counting Practices,
Release 4.1. IFPUG, May 1999.

160. International Telecommunication Union. Recommendation X.500: Information
Technology – Open Systems – Interconnection – The Directory: Overview of
concepts, models and services. ITU-T, 1999.

161. International Organization for Standardization. International Standard ISO
1028:1973. Information processing – Flowchart symbols. ISO, 1973.

162. International Organization for Standardization. International Standard ISO
5807:1985. Information processing – Documentation symbols and conventions
for data, program and system flowcharts, program network charts and system
resources charts. ISO, 1985.

163. International Organization for Standardization. International Standard ISO
8879. Information Processing – Text and Office Systems – Standard Generalized
Markup Language (SGML). ISO, 1986.

164. International Organization for Standardization. International Standard ISO
9000-3:1991(E). Quality management and quality assurance standards – Part 3:



References 359

Guidelines for the application of ISO 9001 to the developement, supply and
maintenance of software. ISO, 1991.

165. International Organization for Standardization. International Standard ISO
9241-10. Ergonomic Requirements for Office Work with Visual Display Termi-
nals (VDTs) – Part 10: Dialogue Principles. ISO, 1991.

166. International Organization for Standardization. International Standard ISO
9001:1994(E). Quality systems – Model for quality assurance in design, devel-
opement, production, installation and servicing. ISO, 1994.

167. International Organization for Standardization. International Standard
ISO/ICE 14977. Syntactic metalanguage – Extended BNF. ISO, 1996.

168. International Organization for Standardization. International Standard
ISO/IEC 10744-1992(E). Information technology – Hypermedia/Time-based
Structuring Language (HyTime). ISO, 1996.

169. International Organization for Standardization. International Standard
ISO/IEC 16262. ECMAScript: A general purpose, cross-platform programming
language. ISO, 1998.

170. International Organization for Standardization. International Standard
9075:1999. Information Technology – Database Language SQL. ISO, 1999.

171. International Organization for Standardization. International Standard
ISO/IEC 13568. Information Technology, Z Formal Specification Notation, Syn-
tax, Type System and Semantics. ISO 2002.

172. T. Isakowitz, E.A. Stohr, P. Balasubramanian. RMM: A Methodology for
Structured Hypermedia Design. Communications of the ACM, vol. 38, no. 8,
pp.34–44, 1995.

173. R.J.K. Jacob. Using Formal Specifications in the Design of a Human-Computer
Interface. Communications of the ACM, vol. 26, no. 4, pp.259–264, 1983.

174. I. Jacobson. Object-Oriented Software Engineering: A Use Case Driven Ap-
proach. Addison-Wesley, 1992.

175. I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Development Pro-
cess. Addison-Wesley, 1999.

176. J. Jensen. Generation of machine code in ALGOL compilers. BIT – Nordisk
Tidskrift for Informations-Behandling, vol. 5, pp.235–245, 1965.

177. T. Jim, J. Palsberg. Type inference in systems of recursive types with subtyp-
ing. Manuscript, 1999.

178. S.P. Jones (Ed.). Report on the programming language Haskell 98. Technical
Report YALEU/DCS/RR-1106, Yale University, CS Dept., February 1999.

179. Y.H. Kamath, R.E. Smilan, J.G. Smith. Reaping Benefits with Object-Oriented
Technology. AT&T Technical Journal, vol. 72, no. 5, pp.14–24, 1993.

180. K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Carnegie Mellon Software Engineering In-
stitute, Technical Report CMU/SEI-90-TR-021, 1990.

181. N. Kassem and the Enterprise Team. Designing Enterprise Applications with
the Java 2 Platform, Enterprise Edition. Sun Microsystems, 2000.

182. A. Kay. The Reactive Engine. PhD thesis, University of Utah, September 1969.
183. C.F. Kemerer. Reliability of Function Points Measurement – A Field Experi-

ment. Communications of the ACM, vol. 36, no.2, pp.85–97, 1993.
184. P. Kilpeläinen, D. Wood. SGML and Exceptions. Technical Report HKUST-

CS96-03, Department of Computer Science, University of Helsinki, 1996.
185. B. Kirkerud. Object-oriented Programming with Simula. Addison-Wesley,

1989.



360 References

186. G.E. Krasner, S.T. Pope. A Cookbook for Using the Model-View-Controller
User Interface Paradigm in Smalltalk-80. Journal of Object-Oriented Program-
ming, August/September, pp.26–49, 1988.

187. D. Kristol, L. Montulli. HTTP State Management Mechanism. RFC 2109,
Network Working Group. February 1997.

188. P. Kruchten. The Rational Unified Process. Addison-Wesley, 1999.
189. D.A. Ladd, J.C. Ramming. Programming the Web: An application-oriented

language for hypermedia services. In 4th International World Wide Web Con-
ference, 1995.

190. P.J. Landin. The Next 700 Programming Languages. Communications of the
ACM, vol. 9, no. 2, pp. 157–165, March 1966.

191. J.A. Landay, B.A. Myers. Interactive Sketching for the Early Stages of User
Interface Design. In: Proceedings of Human Factors in Computing Systems.
ACM Press, May 1995, pp. 43–50.

192. C. Larman. Applying UML and Patterns. Prentice Hall, 1998.
193. H.D. Lasswell. The Structure and Function of Communication in Society. In:

Bryson, Lyman (Ed.), The Communication of Ideas. Institute for Religious and
Social Studies, 1948, pp. 37–51.

194. R. Lerdorf, K. Tatroe. Programming PHP. O’Reilly, 2002.
195. J. Liberty, D. Hurwitz. Programming APS.NET. O’Reilly, 2002.
196. B. Liskov. Keynote Address – Data Abstraction and Hierarchy. Addendum

to the Proceedings on Object-oriented Programming Systems, Languages and
Applications. ACM Press, 1987.

197. B. Liskov. Data Abstraction and Hierarchy. SIGPLAN Notices, vol. 23, no. 5,
pp. 17–34, May 1988.

198. S.W. Loke, A. Davison. Logic Programming with the World-Wide Web. In:
Proceedings of the 7th ACM Conference on Hypertext, ACM Press, pp.235–
245, 1996.

199. G.A. Di Lucca, A.R. Fasolino, F. Pace, P. Tramontana, U. de Carlini. WARE:
A Tool for the Reverse Engineering of Web Applications. In: 6th European
Conference on Software Maintenance and Reengineering. IEEE, 2002.

200. R. Malan, D. Coleman, R. Letsinger. Lessons Learned from the Experiences of
Leading-Edge Object Technology Projects in Hewlett-Packard. ACM SIGPLAN
Notices, vol. 30, no. 10, pp.33–46, 1995.

201. D.A. Marca, C.L. McGowan. SADT: structured analysis and design technique.
McGraw-Hill, 1987.

202. V.M. Markowitz. ERROL: an entity-relationship role oriented query language.
In: Proceedings of the 3rd Conference on the Entity-Relationship Approach.
North-Holland, 1983.

203. T.J. Marlowe, B.G. Ryder. Properties of data flow frameworks – A unified
model. Acta Informatica, vol. 28, pp.121–163, 1990.

204. J. Marsh, D. Orchard. XML Inclusions (XInclude) Version 1.0 – W3C Working
Draft. World Wide Web Consortium, May 2001.

205. J. Martin, J.J. Odell. Object-Oriented Analysis and Design. Prentice Hall,
1992.

206. P. Martin-Löf. Constructive Mathematics and Computer Programming. In:
Logic, Methodology and Philosophy of Science, VI, 1979, pp.153–175. North-
Holland, 1982.

207. P. Martin-Löf. Intuistionistic Type-Theory. Bibliopolis, 1984.



References 361

208. B. Matzke. ABAP/4 – Programming the SAP R/3 System (Second Edition).
Addison-Wesley, 1999.

209. S. Mazzocchi, R. Rocha. Extensible Server Pages. The Apache Software Foun-
dation, 2001.

210. S. McGlashan et al. Voice Extensible Markup Language (VoiceXML) Version
2.0, W3C Working Draft, October 2001.

211. P. McJones (Ed.). The 1995 SQL Reunion: People, Projects and Politics. SRC
Technical Note 1997-018, Digital Systems Research Center, August 1997.

212. E. Meijer. Server-side Scripting in Haskell. Journal of Functional Programming,
2000.

213. E. Meijer, D. Leijen, J. Hook. Client-Side Web Scripting with HaskellScript.
In: Practical Aspects of Declarative Languages (PADL), LNCS 1551, pp.96–210.
Springer, 1999.

214. E. Meijer, Mark Shields. XMλ – A Functional Language for Constructing and
Manipulating XML Documents. 2000.

215. E. Meijer, D. van Velzen. Haskell Server Pages – Functional Programming
and the Battle for the Middle Tier. Electronic Notes in Theoretical Computer
Science 41, no. 1, Elsevier Science, 2001.

216. A.O. Mendelzon, Z.-Q. Zhang. A Graphical Query Language for Entity-
Relationship Databases. In: Proceedings of the 3rd Conference on the Entity-
Relationship Approach, pp.441–448. North-Holland, 1983.

217. B. Meyer. Applying “design by contract.” IEEE Computer, vol. 25, no. 10,
pp.40–51, October 1992.

218. B. Meyer. Design by Contract. In: Dino Mandroli, Bertrand Meyer (Eds.),
Advances in Object-Oriented Software Engineering. Prentice Hall, 1992.

219. B. Meyer. Eiffel, the Language. Prentice Hall, 1992.
220. Microsoft Developer Network. Official Guidelines for User Interface Developers

and Designers. Microsoft Corporation, 2002.
221. Microsoft Corporation. Microsoft Agent – Software services to enhance the user

interface of applications and Web pages. Data Sheet. Microsoft Corporation,
1999.

222. R. Mordani, J.D. Davidson, S. Boag. Java API for XML Processing Specifica-
tion, v1.1. Sun Microsystems, 2001.

223. M.J. Muller. PICTIVE – an exploration in participatory design. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems. ACM
Press, 1991, pp. 225–231.

224. M.J. Muller. Retrospective on a year of participatory design using the PIC-
TIVE technique. In: Proceddings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM Press, 1992, pp.455–462.

225. M.J. Muller, D.M. Wildman, E.A. White. Equal opportunity PD using PIC-
TIVE. Communications of the ACM, vol. 36, no. 4, pp.64–66, 1993.

226. National Institute of Standards and Technology. Integrated Definition for Func-
tional Modeling (IDEF0), Draft Federal Information Processing Standards Pub-
lication 183. U.S. Department of Commerce, December 1993.

227. P. Naur. The Design of the GIER ALGOL Compiler. BIT. Nordisk Tidskrift
for Informations-Behandling, vol. 3, pp.124–140 and 145-166, 1963.

228. P. Naur. Checking of operand types in ALGOL compilers. BIT. Nordisk Tid-
skrift for Informations-Behandling, vol. 5, pp.151–163, 1965.



362 References

229. M.W. Newman, J. Lin, J.I. Hong, J.A. Landay. DENIM: An Informal Web
Site Design Tool Inspired by Observations of Practice. Human-Computer Inter-
action, vol. 18, no. 3, pp. 259–324, 2003.

230. T. Nguyen, V. Srinivasan. Accessing Relational Databases from the World
Wide Web. Proceedings of the 1996 ACM SIGMOD, 1996.

231. F. Nielson, H. Nielson, C. Hankin. Principles of Program Analysis. Springer,
1999.

232. J. Nielsen. The Art of Navigating through Hypertext. Communications of the
ACM, vol. 33, no. 3, pp.296–310, 1990.

233. B. Nordström, K. Peterson, J.M. Smith. Programming in Martin-Löfs Type
Theory. The International Series of Monographs on Computer Science. Claren-
don Press, 1990.

234. K. Nørmark. Programming World Wide Web Pages in Scheme. Sigplan Notices,
vol. 34, no. 12, pp.37–46, December 1999.

235. K. Nørmark. Programmatic WWW authoring using Scheme and LAML. The
11th International World Wide Web Conference 2002, March 2002.

236. K. Nygaard, O.-J. Dahl. The Development of the SIMULA Languages. The 1st
ACM SIGPLAN Conference on History of Programming Languages, pp.245–
272. ACM Press, 1978.

237. Object Management Group. OMG Unified Modeling Language Specification,
version 1.5, March 2003.

238. Object Management Group. UML 2.0 OCL Specification, OMG Adopted Spec-
ification ptc/03-10-14, October 2003.

239. Office of Government Commerce Staff. Ict Infrastructure Management. Bernan,
2002.

240. M.C.F. Oliveira, M.A.S.T. Turine, P.C. Masiero. A Statechart-based Model for
Hypermedia Applications. ACM Transactions on Information Systems, vol. 19,
no. 1, pp.28–52, ACM Press, 2001.

241. J.K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.
242. J.K. Ousterhout. Scripting: Higher-Level Programming for the 21st Century.

Computer, vol. 31, no. 3, pp.23–30, 1998.
243. M.C. Paulk. How ISO 9001 Compares with the CMM. IEEE Software, vol. 11,

no. 1, pp. 74–83, January 1995.
244. M.C. Paulk, B. Curtis, M.B. Chrissis, C.V. Weber. Capability Maturity Model,

Version 1.1. IEEE Software, vol. 10, no. 4, pp.18–27, 1993.
245. M.C. Paulk, C. Weber, S. Garcia, M.B. Chrissis, M. Bush. Key Practices of the

Capability Maturity Model Version 1.1. Carnegie Mellon Software Engineering
Institute, Technical Report CMU/SEI-93-TR-025, February 1993.

246. D.L. Parnas. On the use of transition diagrams in the design of a user in-
terface for an interactive computer system. Proceedings of the 24th National
Conference. ACM Press, 1969, pp. 379–385.

247. D.L. Parnas. A Technique for Software Module Specification with Examples.
Communications of the ACM, vol. 15, no. 5, pp.330–336, 1972.

248. E. Pelegri-Llopart, L. Cable. Java Server Pages Specification, v.1.1. Sun Press,
1999.

249. G.E. Pfaff. User Interface Management Systems. Springer, 1985.
250. B.C. Pierce. Types and Programming Languages. MIT Press, 2002.
251. G. Poonen. CLEAR: A Conceptual Language for Entities and Relationships.

In: W. Chu, P.P. Chen (Eds.), Centralized and Distributed Systems, pp.194–215.
IEEE Computer Society, 1980.



References 363

252. M.E. Porter. Strategy and the Internet. Harvard Business Review, March,
pp.63–78, 2001.

253. S. Powers. Developing ASP Components. O’Reilly, 1999.
254. A.N. Prior. Past, Present and Future. Oxford Clarendon Press, 1967.
255. C. Queinnec. The Influence of Browsers on Evaluators or, Continuations to

Program Web Servers. International Conference on Functional Programming,
ACM, Montreal, Canada, November 2000.

256. E. Quinn. Application Server Market Share – A Different Angel. Hurwitz Bal-
anced View Bulletin. Hurwitz Group Inc., December 2001.

257. D. Raggett, Arnaud Le Hors, Ian Jacobs. HTML 4.01 Specification – W3C
Recommendation. World Wide Web Consortium, December 1999.

258. J.C. Ramming. PML: A Language Interface to Distributed Voice-Response
Units. ICCL Workshop: Internet Programming Languages. LNCS 1686, pp.97–
112. Springer, 1999.

259. E. Raymond (Ed.). The Jargon file, version 4.3.1, June 2001.
260. M. Richters, M. Gogolla. On Formalizing the UML Object Constraint Lan-

guage OCL. Proceedings of the 17th International Conference on Conceptual
Modeling (ER98), LNCS 1507. Springer, 1998.

261. W. Roesner. DESPATH: An ER Manipulation Language. In: Proceedings of
the 4th International Conference on the Entity-Relationship Approach, pp.72–
81. IEEE Computer Society, 1985.

262. L. Rosenfeld, P. Morville. Information Architecture for the World Wide Web.
O’Reilly, 1998.

263. D.T. Ross. Structured Analysis (SA): A Language for Communicating Ideas.
IEEE Transactions on Software Engineering, vol. 3, no. 1, pp. 16–34, January
1977.

264. D.T. Ross, J.W. Brackett. An approach to structured analysis. Computer De-
cisions, vol. 8, no. 9, pp. 40–44, Sept. 1976.

265. D.T. Ross, K.E. Schoman. Structured Analysis for Requirements Definition.
IEEE Transactions on Software Engineering, vol.3, no. 1, pp. 6–15, January
1977.

266. W.W. Royce. Managing the Development of Large Software Systems. Proceed-
ings of the IEEE WESCON Conference, August 1970, pp.1–9. IEEE, 1970.

267. J. Rumbaugh, M. Balaha, W. Premerlani, F. Eddy, W. Lorenson. Object-
Oriented modeling and design. Prentice Hall, 1991.

268. D. Sangiorgi, D. Walker. The π-calculus – A Theory of Mobile Processes. Cam-
bridge University Press, 2001.

269. A.-W. Scheer. ARIS – Business Process Modeling. Springer, 1999.
270. T. Sekiguchi, A. Yonezawa. A complete type inference system for subtyped

recursive types. In: Proceedings of Theoretical Aspects of Computer Software,
LNCS 789, pp.667–686. Springer, 1994.

271. Private communication with B. Selic and J. Warmer, October 2000.
272. D. Shasha, P. Bonnet. Database Tuning: Principles, Experiments, and Trou-

bleshooting Techniques. Morgan Kaufmann, 2002.
273. M. Shields, E. Meijer. Type-indexed Rows. In: Proceedings of the 28th Annual

ACM SIGPLANSIGACT Symposium on Principles of Programming Languages
(POPL’01), ACM Press, pp.261–275, 2001.

274. A. Shoshani. CABLE: A Chain-Based Language for the Entity-Relationship
Model. In: Proceedings of the 1st International Conference on the Entity-
Relationship Approach. North-Holland, 1980.



364 References

275. P. Shoval. ADISSA: architectural design of information systems based on Struc-
tured Analysis. Information System, vol. 13, no. 2, pp.193–210, 1988.

276. P. Shoval, I. Frumermann. OO and EER conceptual schemas: a comparison of
user comprehension. Journal of Database Management, vol. 5, no. 4, pp.28–38,
1994.

277. P. Shoval, J. Kabeli. FOOM: Functional- and Object-Oriented Analysis and
Design of Information Systems – an Integrated Methodology. Journal of
Database Management, vol. 12, no. 1, pp.15–25, 2001.

278. D. D’Souza, A. Sane, A. Birchenough. First Class Extensibility for UML –
Packaging of Profiles, Stereotypes, Patterns. Proceedings of the UML’99, Fort
Collins, LNCS 1723. Springer, 2000.

279. S. Shlaer, S.J. Mellor. Object-Oriented Systems Analysis: Modeling the World
in Data. Pearson Education, Yourdon Press Computing Series, March 1988.

280. R.T. Snodgrass (Ed.). The TSQL2 Temporal Query Language. Kluwer Aca-
demic Publishers, 1995.

281. P.P. da Silva. User Interface Declarative Models and Development Environ-
ments: A Survey. Proceedings of 7th International Workshop on Design, Speci-
fication and Verification of Interactive Systems, Limerick, Ireland, LNCS 1946.
Springer, June 2000, pp.207–226.

282. P.P. da Silva, N.W. Paton. UMLi: The Unified Modeling Language for Inter-
active Applications. Proceedings of the UML’2000, York, LNCS 1939. Springer,
2000.

283. J.M. Spivey. The Z Notation. Prentice Hall, 1992.
284. P. Sully. Modelling the World with Objects. Prentice Hall, 1993.
285. Sun Microsystems. Java Remote Method Invocation Specification, revision

1.50. Sun Microsystems, October 1998.
286. Sun Microsystems. Java Object Serialization Specification, revision 1.43. Sun

Microsystems, November 1998.
287. I.E. Sutherland. Sketchpad – A Man-Machine Graphical Communication Sys-

tem. In: Proceedings of AFIPS Spring Joint Computer Conference, pp.328–346,
1963.

288. Svensk Standard. Databehandling – Programsprak – SIMULA, SS 636114,
1987.

289. A. Tansel (Ed.). Temporal Databases: Theory, Design, and Implementation.
Benjamin/Cummings, 1993.

290. B. Thalheim. Entity-Relationship Modeling. Foundations of Database Tech-
nology. Springer, 2000.

291. S. Thatte (Ed.). Specification: Business Process Execution Language for Web
Services Version 1.1, May 2003.

292. P. Thiemann. Modeling HTML in Haskell. Practical Applications of Declara-
tive Programming, PADL’00, LNCS 1753. Springer, January 2000.

293. P. Thiemann. A typed representation for HTML and XML documents in
Haskell. February 2001.

294. P. Thiemann. Wash/CGI: Server-side Web Scripting with Sessions and Typed,
Compositional Forms. Practical Aspects of Declarative Languages (PADL’02).
January 2002.

295. H.S. Thompson, D. Beech, M. Maloney, N. Mendelsohn. XML Schema Part 1:
Structures. W3C Recommendation, May 2001.

296. TPC Benchmark W (Web Commerce). Transaction Processing Performance
Council, 2000.



References 365

297. D. Tsichritzis. Form Management. Communications of the ACM, vol. 25, no.
7, pp.453–478, 1982.

298. S. Tucker Taft, R.A. Duff (Eds.). Ada 95 Reference Manual: Language and
Standard Libraries. International Standard ISO/IEC 8652:1995(E), LNCS 1246.
Springer, 1995.

299. C.R. Turner, A.L. Wolf, A. Fuggetta, L. Lavazza. Feature Engineering. In:
Proceedings of the 9th International Workshop on Software Specification and
Design, pp. 162–164. IEEE, 1998.

300. P. Ursprung, C.A. Zehnder. HIQUEL: An Interactive Query Language to De-
fine and Use Hierarchies. In: Proceedings of the 3rd Conference on the Entity-
Relationship Approach. North-Holland, 1983.

301. P. Vilain, D. Schwabe, C.S. de Souza. Modeling Interactions and Navigation in
Web Applications. Proceedings of 7th International Workshop on Design, Spec-
ification and Verification of Interactive Systems, Salt Lake City, Utah, LNCS
1921. Springer, 2000, pp.115–127.

302. P. Vilain, D. Schwabe, C.S. de Souza. A Diagrammatic Tool for Representing
User Interaction in UML. Proceedings of the UML’2000, York, LNCS 1939.
Springer, 2000.

303. J. Vlissides. The Hollywood Principle. C++ Report, vol. 8, February 1996.
304. W3C HTML working group. XHTML 1.0 The Extensible HyperText Markup,

W3C, 2000. Language.
305. W3C HTML working group. Extensible HTML version 1.0 Strict DTD, W3C,

2000.
306. M. Wahl, A. Coulbeck, T. Howes, S. Kille. Lightweight Directory Access Pro-

tocoll, version 3: Attribute Syntax Definitions, RFC 2252. Network Working
Group, December 1997.

307. M. Wahl, T. Howes, S. Kille. Lightweight Directory Access Protocoll, version 3,
RFC 2251. Network Working Group, December 1997.

308. L. Wall, T. Christiansen, J. Orwant. Programming Perl. O’Reilly, 2000.
309. A.I. Wasserman. A Specification Method for Interactive Information Systems.

Proceedings SRS – Specification of Reliable Software, IEEE Catalog No. 79
CHI1401-9C, IEEE, 1979, pp.68–79.

310. A.I. Wasserman. Extending State Transition Diagrams for the Specification of
Human-Computer Interaction. IEEE Transaction on Software Engineering, vol.
11, no. 8, 1985, pp.699–713.

311. G.H. Watson. Strategic benchmarking – How to rate your company’s perfor-
mance against the world’s best. Wiley, 1993.

312. M. Wallace, C. Runciman. Haskell and XML: Generic combinators or type-
based translation? In: Proceedings of the ICFP’99, ACM SIGPLAN Notices,
vol. 34, no. 9, pp.148–159, September 1999.

313. J. Warmer, S. van Egmond. The implementation of the Amsterdam SGML
parser. Electronic Publishing, vol. 2, no. 2, pp.65–90, July 1989.

314. J. Warmer, A.G. Kleppe. The Object Constraint Language. Addison-Wesley,
1999.

315. E. Whelan, F. McGrath. A Study of the Total Life Cycle Costs of an E-
Commerce Investment. Evaluation and Program Planning, vol. 125, pp.191–196,
2002.

316. S. White et al. JDBC API Tutorial and Reference. Addison-Wesley, 1999.



366 References

317. R. Winter. Formal Validation of Schema Clustering for Large Information Sys-
tems. Americas Conference on Information Systems, Pittsburgh, PA, August
25-27, 1995.

318. N. Wirth. Programming in MODULA-2, 3rd Edition. Springer, 1985.
319. D. Wood. Standard generalized markup language: Mathematical and philo-

sophical issues. In: J. van Leeuwen (Ed.), Computer Science Today. Recent
Trends and Developments, LNCS 1000, pp.344–365. Springer, 1995.

320. J.B. Wordsworth. Software Developement with Z – A Practical Approach to
Formal Methods in Software Engineering. Addison-Wesley, 1992.

321. XSL. The Extensible Stylesheet Language Family. Addison-Wesley, 2000.
322. XSL Transformations (XSLT) – W3C Recommendation. World Wide Web

Consortium, November 1999.
323. E. Yourdon. Modern Structured Analysis. Yourdon Press, Prentice Hall, 1989.
324. Y. Zheng, M.-C. Pong. Using Statecharts to Model Hypertext. In: Proceedings

of the ACM Conference on Hypertext. ACM Press, 1992, pp. 242–250.
325. J. Ziegler. ViewNet – Conceptual Design and Modeling of Navigation. Pro-

ceedings of INTERACT’97.
326. S.N. Zilles. Algebraic Specification of Data Types. Project Mac Progress Re-

port 11, Massachusetts Institute of Technology, 1974.



Index

4GL see fourth generation language

Extensible Server Pages
XSP 206

ABAP-4 5
abstract data object 9
abstraction 166
abstraction level 74
ACID 123
action set chart 74
Algol 328
application server 12
applied science 166
architecture description languages 150
architecture diagram 194
arity 111
ASP 194
atomicity 123
automatic generation 193

backward ring terminal 129
binary PD model 111
bipartite typed state machine 49
black-box abstraction 9, 138, 163, 173,

279, 326, 344
block structure 194
bookshop 23
bookstore example see webshop

example
business culture 165
business web 348

C 328

CGI see Common Gateway Interface

change history 194

checkpoint 125

CICS 11

class diagram 23

click-dummy 40

client page 49

description safety 201, 204

type safety 201, 204

client page instance 49

clone 133

clone parts 133

COCOMO see Constructive Cost
Model

Cocoon 206

combined multiplicity 126

commercial off-the-shelf 11, 150

Common Gateway Interface 204

commutativity diagram 130

complex web site 327

composite entity type 131

composition model 327

computer game 172

concatenation 130

conceptual model see conceptual
modeling

conceptual modeling 194, 327

conservative decomposition 239

consistency 123

constraint 113, 125

composition constraint 131

contexts 125

expression 125



368 Index

if constraint 129
immutable composition 136
nand constraint 128
permanence 136
remote subscriber constraint 140
subset constraint 128
xor constraint 129

Constructive Cost Model 167
content/layout separation 203
contents subsystem 131
CONTEXT 119
contrafactual theory 273
Core NSP 299

grammar 300

DAL 328
updates 113

debugging information 196
deletion of a link 113
DENIM 326
dependent product 115
descriptive approach 74, 165
descriptiveness see descriptive

approach
design by contract 260, 263, 264
design recovery 193
desktop agent 172
desktop databases 13, 41, 326
desktop metaphor 13, 172
detouring relation type 114
dialogue model 50, 55
dialogue specification 66
dialogue specification language 66
dialogue steps 11
direct manipulation 326
direction 113, 114
documentation 193
documentation tool 193
domain expert view 43
drag and drop 13, 172, 214
durability 123
dynamic semantics 113

e-commerce 9
editable method call 41
electronic data interchange 9
embedding specifications 183
empowerment 7, 165, 172
engineering 170

enterprise application 9
enterprise resource planning 9
enterprise system 9
entity instance 112
entity relationship approach 328
entity type 111
ER see entity relationship approach
evaluation order 69
executable specification 74
Extensible Markup Language 209, 327
Extensible Server Pages 206
external references set 114
external relation types 114

feature 102
fine-grained interaction 41
flat decomposition mechanism 100
flight reservation 9
FOR loop 122
form storyboard 41
form type 193, 194
formal parameter 194
formchart 55

arrow 55
ellipse 55
readability 56
rectangle 55

formchart decomposition 99
formchart elements 56
formlike view 13
forward ring terminal 129
forward role 113
fourth generation language 347
FPA see Function Point Analysis
fresh entity instance 112
full information system model 51
Function Point Analysis 167
functional dependency 130, 179
functional dependent order 130

global time order 273
glue 150
GROUPBY 120
guideline 196

HCI 325
high-level description 283
higher-order server pages 214
HTML 203
HTTPRequest 193



Index 369

HTTPResponse 193
human–computer interaction 9
human–computer interface 9
hypermedia design 326
hypertext 326

IDEs 247
immediate status 14
informality 23
information architecture 327
information model 60, 62
information system model 49
initial selection base 115
input capability 194
input device 326
INSERT 119
insertion of a link 113
insight models 167
integrated development environments

247
interface metaphors 325
inverse order 129
isolation 123
isomorphism 133
isoterminal 113
IT expert view 43

J2EE 11
Java 203, 288, 292, 328
Java Bean 292
Java Beans 203
Java Server Pages 203
Java Servlets 203
javadoc 193
join entity type 132
joins 115
JSP see Java Server Pages
JSP actions 203
JSPick 193

control
multiple select menu 194
pseudo-control 195
radio button 194
various-control 195

keyboard 326
know-how 167
knowledge transfer 168

labeled product 115

layered data model 49
learning 167
learning organizations 167
leveling 100
linear programming 167
link 112
linked 112
local modality 53
log warehouse 271, 272, 348
lower multiplicity 126
lower multiplicity number 126

mail client 9
major multiplicities 126
many 126
Markov chains 167
markup language 194
master relation type 131
mathematical models 166
maximal 131
message

network message 273
message storyboard 46, 242
messages 41
metadata 173
mock-up 40, 345
Model 2 architecture 214
model graph 111
model union 97
model-driven architecture 325
model-oriented specification 325
modeler 56
modeling alternatives 74
monotonic modeling 98
Monte Carlo simulation 167, 335
multi-tier system 11
multi-user abstracted model 108
multi-user declared model 108
multi-user exception 108
multi-user safe model 108
multidependent entity types 132
multiplicity 113, 126

navigation 326
navigation model 327
navigation primitive 326
navigational structure 194
net evolution trace for fixed sites 273



370 Index

NETFS see net evolution trace for
fixed sites

non-modality 172
notification 140

object-oriented analysis 325
office suites 41
online transaction processing 9
opaque identity 60
opaque reference 60
opaque reference facade 60
ORDER BY 120
outgoing relation type 114
ownership 172

packaging 100
page change 10
page diagram 36
page edits 10
page image 43
page interaction 326
page signature 193
pages with active content 53
partial order 129
partial order diagram 129
PD model 109
Per Martin-Löf 299
persistent data 23
personalization model 327
PHP 194
PICTIVE 326
plug components 150
poor cousin of HCI 325
port 150
power user 163, 172, 233
prescriptiveness see descriptive

approach
presentation layer 41, 193
presentation model 327
primary working model 108
primitive type 114
primitive update 113
problem domain 165, 166, 182, 269,

335, 336
project scope 165
projection 115
pseudo-evaluation 193, 283
pure form-based paradigm 51
push-based 326

queuing theory 167

real word 173, 174, 329
refinement 107
refresh 13
relation type 111
relation type path 113
relational calculus 115
relationship 127
relationship uniqueness 127
reload vs. refresh 13
remote publisher 140
REPORT 120
reports 41
repository 112
requirement 102
response page principle 14
result set 116
reverse engineering 193, 196, 283
reverse role 113
ring terminal 129
RMM 326
roles 111
ROLLBACK 122
running example VI, 23

SABRE 9
SAP 5

consolidation system 12
development system 12
production system 12
transportation system 12

SAP R/3 12
screen 23
screen diagram 40
screen transaction 11
search criteria 23
Seeheim model 325
SELECT 119
semantic data model 327
semantical framework 74
server action 16, 49
server input declared model 108
server input safe model 108
service interface 9
session 9, 204
sessionless interface 9
shared model 63
SHD see state history diagram



Index 371

shelf components 150
shopping cart 10
signature model 107
SILK 326
Simula 335
simulation models 167
single-staged interaction 41
social interaction 167
software management 165
software process 165
Software Technology Review 168
solution domain 166, 171, 269
source code 238
source code analysis 194
source code decomposition 239
source name see transition source

name
specification language 193
specifying models 167
spreadsheet applications 41
SQL queries 115
state 112
state design pattern 260
state diagram 326
state history diagram 53, 67, 249, 249,

348
state instances 104
state set 104, 191
state specialization 104, 270
static constraints 125
static pages 194
static semantics 112
statistical models 167
strong typing 41
structural invariant 125
structural invariant context 125
structural joins 115
structural model 327
structured analysis 325
structured artifact 233
structured editor 53, 231, 235
style guide 74
submission form metaphor 13
submit 55
submodel 114, 239
subsystem 114

clocked 273
superparameter 59, 59
SWEBOK 168

syntax model 233, 234
syntax model of the PD modeling

language 234
system interface 41, 193
system modeling 9, 325

TACID see transparent ACID
tag libraries 203
target name see transition target

name
targeted formal parameter 194
team server 229, 230
temporal constraints 135
textual input 325
TPC-W 23
transactional invariant 125
transactional invariant context 125
transactions 113
transition source name 57
transition target name 57
transparent ACID 123, 125, 139
trivial upper multiplicity 126
two-staged interaction 11

UIMS see user interface management
system

UML see Unified Modeling Language
Unified Modeling Language 7, 73, 250,

328, 335
unique attribute 127
upper multiplicity 126
upper multiplicity number 126
user identity 124
user interface generation 326
user interface management system 325
user message model 59
user message system model 51
user perspective 9
user session 49

ViewNet 326
virtual world 172
visual language 327
visual state specialization 104, 270

WARE 194
weak entity type 131
web presentation layer 193, 214
WebML 326, 327



372 Index

webshop
new customer 23

webshop example
Angie specification 191
browsing categories 23, 26, 84
buying 23, 29, 38, 89
changing customer data 23, 29, 92
login 23, 24, 76
logout 23, 24, 76
registration 23, 24, 76
search 23, 30, 84
shopping cart 23, 29, 87

WHILE loop 122
white-box abstraction 173
widget annotation 45
widget constraints 95
word-of-mouth communication 168
work product 172

XHTML 206
XML see Extensible Markup

Language

Z notation 304, 326



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




